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CHAPTER I. INTRODUCTION

The work presented in this thesis is concerned with modeling of

millimeter-wave impact avalanche transit-time (IMPATT) diodes. The 15TATT

is currently the most important semiconductor device for generation

and amplification of power in the millimeter-wave frequency range.

Difficulties arise in the modeling of these devices because of their

submicron dimensions and high operating frequencies. Device models

based on the well known "drift and diffusion" description of

electron and hole transport are not expected to always be applicable

for such small dimensions and high frequencies, so it is necessary to

have more detailed models, both to establish the circumstances under

which the drift and diffusion approximation fails and to model devices

to which drift and diffusion based analyses cannot be applied. This

thesis describes the development of a more general transport model,

the development of a computer simulation based on the model, and the

results obtained using the simulation.

This introductory chapter consists of three sections. The first

two establish the context of the present work by providing reviews of

the principles and performance capabilities of IMPATT diodes and of

approaches to modeling charge transport in semiconductors. The third

section describes the organization of the remainder of the thesis.

1.1 IMPATT Devices

1.1.1 Basic Operating Principles and Experimental State of

the Art. The use of carrier transit-time effects to produce negative

resistance in a semiconductor device was first proposed by Shockley

-!a.-l-
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in 1954.1 In 1958, Read2 presented an analysis of a diode structure

in which use of transit-time effects would be combined with carrier

injection by impact ionization. The fundamental characteristics of

Read-type device operation can be understood by considering the

operation of an idealized device, whose doping and dc electric field

profiles are shown in Fig. i.I.3 The figure also shows a sinusoidal

RF terminal voltage and the idealized forms of the injected and induced

current wave forms which result when the magnitude of the dc bias

voltage is just below that required for reverse breakdown.

The doping profile is chosen so that under reverse bias a

narrow "ionization" region of high field exists near the p-n junction.

At the beginning of the RF cycle, the field in this region is slightly

below threshold for avalanche breakdown by impact ionization. As

terminal voltage increases, the threshold is passed, and the number of

carriers in the ionization region begins to increase. This continues

until the midpoint of the cycle when the field in the ionization region

drops once again below threshold. The electrons generated in the

ionization region are injected into the lower-field "drift" region,

where, if the field is strong enough, they travel at an approximately

constant velocity. If the length of the drift region is such that the

drift transit time is half the RF period, the motion of the electrons

induces a flow of current in the diode terminals which is approximately

180 degrees out of phase with the terminal voltage, giving rise to

negative resistance. As the cycle ends, the drifting electrons are

collected by the right-hand contact, and the process repeats. All

devices which operate by this combination of injection by impact

ionization and drift across a depleted region are known as IMPATT

-2-
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diodes, though their structure may differ considerably from that

shown in Fig. 1.1.

In the operation of a real IMPATT device, various departures

from the ideal behavior summarized in Fig. 1.1 occur. The space

charge of the carriers which accumulate during the first part of the RF

cycle depresses the field in the ionization region so that injection

occurs before the midpoint of the cycle. This reduces the lag between

terminal voltage and current and degrades the device efficiency. Other

effects which lower efficiency include diffusive spreading of the

injected carrier pulse, impact ionization in the drift region, and

carrier drift at nonsaturated velocities.

Because of difficulties with device fabrication, IMPATT mode

operation was not realized until 1965, when Lee et al.4 succeeded in

obtaining the first oscillations from a Read-type diode. About the

5
same time, Johnson et al. obtained oscillations from a simpler p-n

diode structure. IMPATT fabrication and circuit technology have

developed steadily since then, and today IMPATTs are widely used as

sources and amplifiers in low and medium power microwave and

millimeter-wave systems. Silicon IMPATTs in particular are presently

the most important solid state power source at high microwave and

millimeter-wave frequencies. 6 The experimental power and frequency

state of the art for a variety of semiconductor devices is shown in

Fig. 1.2.729 This shows that Si IMPATTs are currently the highest

power semiconductor devices for millimeter-wave power generation,

and that their useful frequency range extends to several hundred

gigahertz.
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1.1.2 Status of IMPATT Modeling. IMPATT operation is

inherently nonlinear, so detailed modeling of large-signal operation

requires the use of numerical methods. Most IMPATT models to date have

been intended for microwave devices and have been based on the conven-

tional drift and diffusion description of carrier transport. In his

original paper, Read 2 assumed saturated drift, with equal velocities and

ionization rates for electrons and holes, and ignored diffusion. Other

workers have developed small-signal models which allowed for unequal

saturated velocities and ionization rates, 30 arbitrary doping profiles,
3 1

field-dependent velocities,
3 2 and diffusion. 3 3 Gilden and Hines 34

derived a useful small-signal equivalent circuit for Read-type IMPATTs,

showing the tuning effects of the dc bias current. Evans and Haddad
35

developed the first closed-form expression for IMPATT large-signal

impedance, using the assumption of a small phase angle associated with

the drift transit time. This assumption, together with that of saturated

drift, was removed in a large-signal model developed by Greiling and

Haddad. 3 6 A well known finite-difference simulation based on a compara-

tively complete version of the drift-diffusion model was developed by

Scharfetter and Gummel. 37 Subsequent workers have greatly improved

the efficiency of finite-difference simulations based on the drift-

diffusion model, and have reached a better understanding of the

numerical diffusion which is associated with finite-difference

schemes. 3,38

A few attempts have been made to develop IMPAIT models which

account for additional physical effects. 3 9 -  It will be shown that

none of these represents a self-consistent treatment using a

transport model better than conventional drift and diffusion.

t -6-
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Development of such a model is one focus of the present work, and a

brief review of the spectrum of possible transport models will there-

fore now be given to establish a context for the work described in

subsequent chapters.

1.2 Models of Electron Transport in Semiconductors

1.2.1 A Hierarchy of Approaches. The range of treatments of

electron transport in semiconductors is conveniently described with

reference to the hierarchy of approaches shown in Fig. 1.3. 42 Electron

transport in semiconductors is fundamentally quantum mechanical in

nature (because the deBroglie wavelength of electrons is not small

with respect to interatomic spacings), but can often be modeled using

the quasi-free-particle (QFP) approximation shown in the center of the

figure. In the QFP approximation, individual electrons are treated as

classical particles with effective mass supplied by band theory. The

concept of the hole is used to describe charge transport due to empty

states in the valence band. The approximation is based on the assumption that

collisions and acceleration due to externally applied electric fields

can be treated as perturbations to the band structure description of

the perfect lattice. This is generally true if the field is not so

large as to invalidate the use of Bloch functions for the electron

states, and if characteristic distances other than interatomic

spacings are large compared to the size of an electron wave packet.'3

Once the band structure and scattering rates are established, QFP

modeling of carrier transport can be accomplished by use of Monte

Carlo or Rees iterative4 4 techniques to solve the phase-space

transport equation4 5 with the appropriate collision term. However,

such methods are generally too expensive for routine application

i -7-
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to time domain simulation of devices, although they are used extensively

'or modeling carrier transport phenomena.

When certain simplifications are made in order to produce more

economical device simulations, sub-QFP models result. Intead of

working in terms of individual carriers or the exact form of the dis-

tribution function, these models use approximate descriptions of the

distribution function. The distribution may be assumed to be in some

parameterized form, such as displaced Maxwellian or a truncated series

of Legendre polynomials, after which equations for the unknown param-

eters can be found from the phase-space transport equation. Alterna-

tively, Monte Carlo data can be used to evaluate the phase-space

collision term directly, and the results used in simple energy and

momentum balance relations. This latter approach requires no assump-

tions about the form of the velocity distribution, but intuitively

chosen balance relations are in fact inconsistent with the phase-

space eauation in spatially inhomogeneous situations.

The transport picture can be further simplified by assuming that

the velocity distribution is always in equilibrium with the local elec-

tric field. These will be referred to as "static" conditions elsewhere

in the thesis. The assumption is valid if the change in field strength

seen by moving carriers is small during the time required to reach

equilibrium. In this "static" approximation, carrier motion is

commonly described using the conventional drift-diffusion equation with

field-dependent drift velocity (or mobility), diffusion coefficients,

and ionization rates. In some situations where the static model is

almost appropriate for describing carrier transport, additional effects

can be accommodated by adding extra transport parameters. A

.. -9-..
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"reparameterized" model has been used, for example, in dead space

modeling of the impact ionization process.

Above the QFP approximation in Fig. 1.3 are the partial and full

quantum regimes. In the partial quantum regime, the QFP approximation

is substantially valid, but additional quantum effects, such as band-to-

band tunneling or size quantization in one spatial dimension, are im-

posed on the basic framework. When characteristic dimension becomes

extremely small, full quantum treatment of transport becomes necessary.

This is still primarily the realm of the theoretical physicist.

1.2.2 Applications to IMPATT Modeling. The preceeding discussion

illuminates why the applicability of the static drift-diffusion model

to IMPATT modeling becomes suspect in the case of devices operating at

millimeter-wave frequencies. The drift-diffusion mod - 'ssumt t.uili-

brium between the carrier velocity distributions and I-cal electric

field, but in millimeter-wave IMPATTs such equilibrium frequently may

not exist because it is possible for carriers in these devices to

experience significant changes in field strength during the time re-

quired to reach equilibrium. There are two main reasons why depar-

tures from equilibrium will be more significant at millimeter-wave

frequencies than at microwave frequencies. First, design length

decreases, and doping levels increase with frequency, so that drifting

carriers travel through steeper gradients of the field strength in

millimeter-wave devices than in microwave devices. This will affect

even the dc behavior. Second, the maximum rate of change of terminal

voltage, hence of internal field strength, tends to increasr with fre-

quency, though this tendency is offset somewhat by the decrease in

RF amplitude which comes with decreasing device length.

-10- 4
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Use of a full QFP model would give full knowledge of the

carrier velocity distributions at all times. As was noted, however,

such models are genera_,y expensive when applied to simulation of

devices. The reason for this is that they keep track of excessive

information: the position and velocity of each individual carrier. Much

of this information is not of first-order importance to a device simula-

tion, since, for the purpose of determining device terminal currents

and voltages, only the spatial distributions of carrier concentration

and average velocity are required.

One attractive approach to filling the need for a nonstatic model

for millimeter-wave IMPATTs is the method of conservation of energy and

momentum, which falls in the sub-QFP regime of the hierarchy shown in

Fig. 1.3. This method is not based on the static assumption of

carrier field equilibrium and is much more economical for device

simulation than full QFP methods. A presentation of the equations of

energy and momentum conservation in transport in semiconductors, to-

gether with an extensive discussion of their relationship to various

lower order models, has been given by Blotekjaer.4
7

The nature of the energy and momentum conserving model for

carrier transport can be briefly described as follows. The model

consists of Poisson's equation for the electric field gradient,

together with transport equations for three quantities as functions

of space and time: carrier concentration, average momentum, and

average energy. The first two quantities are required for determin-

ing device terminal behavior. The momentum equation keeps track of

the various contributions to the momentum of the aggregate of carriers,

such as gains due to acceleration by the field and losses due to

-------- 9-- .... ......- ... ...-



collisions. This means that the average carrier velocity is not a

static function of field. The third quantity, average energy, is

not required for calculating device voltages and currents, but gives

the width of the velocity distribution, which affects the rate of

carrier diffusion and, to a first approximation, determines the rates

of collisions which affect momentum and determines the rate of impact

ionization.

Concentration, average velocity, and average energy are pro-

portional to the zeroth, first, and second moments of the velocity

distribution. In the QFP approximation, the distribution is governed

by the phase-space transport equation, so the carrier, momentum, and

energy transport equations required under the energy and momentum con-

serving model can be obtained by taking the first three velocity moments

of the phase-space equation. Using the resulting transport equations

in the energy and momentum conserving model guarantees that it will be

consistent with the phase-space equation to second order in the

velocity coordinate.

1.3 Outline of the Present Study

The goals of this study are to apply the principles of energy

and momentum conservation to simulation of millimeter-wave Si IMPATT

diodes, to produce a computer simulation embodying the principles,

to use the simulation to examine device behavior under dc and large-

signal conditions, and, by comparison with results obtained using a

conventional simulation, to establish the limits of applicability

of drift-diffusion simulation.

-1-j'
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The organization of the thesis is as follows. Chapter II

develops energy and momentum conserving transport equations appropriate

for carriers in Si. Chapter III examines numerical methods based on

finite-difference approximation of the transport equations derived in

Chapter II. A stable, accurate, and efficient numerical

procedure for their solution is developed. Chapter IV presents results

from computer simulation of millimeter-wave Si IMPATT diodes. Results

from the new simulation are compared with results obtained using a

conventional drift-diffusion simulation for a variety of device lengths

and operating frequencies, and reasons for the observed differences

are discussed. The effects of various energy boundary conditions and

of realistic contact regions are also examined. Chapter V contains

discussion, conclusions, and suggestions for further research.
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CHAPTER II. THE TRANSPORT MODEL

This chapter describes the energy and momentum conserving

transport model which has been developed to provide a better des-

cription of carrier transport in Si IMPATT diodes than that provided

by the conventional drift-diffusion model. The contents of the chapter

are as follows. Section 1 presents a derivation of the collisionless

forms of the carrier, energy, and momentum transport equations, and

discusses the physical interpretations of their various terms. In

Section 2, functional forms and numerical values are obtained for terms

describing the effects of collision processes. Section 3 discusses

the differences between the resulting model and other nonstatic IMPATT

models, and also shows how, under certain conditions, the model limits

to the conventional one. Section 4 is a general discussion and

summary of the chapter.

2.1 The Collisionless Transport Equations

This section develops collisionless transport equations for carriers,

carrier energy and carrier momentum in Si.* The development presented

here and throughout much of the remainder of this chapter is given

in terms of electron transport only. The extensions to hole transport

are readily apparent.

2.1.1 Distribution-Independent Analysis. The starting point

for building the energy and momentum conserving transpnrt model is

the quasi-free-particle approximation described in Chapter I.

*Much of the material in this section is based on the treatment of

Duderstadt and Martin.4
5
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The approximation allows carriers to be treated as classical particles

with effective masses and collision rates determined from the -nergy

band structure and perturbation analysis. The motion of the carriers

can be followed by keeping track of their positions and velocities. It

iz convenient to do so by keeping track of the carrier distribution

function, which gives the carrier concentration in six-dimensional

(location and velocity) phase space as a function of time.

In the absence of collisions, the concentration N(r,v,t) at the

phase point (r,v) and time t will, according to the Liouville

theorem,4 8 follow its trajectory in phase space unchanged. A short

time At later, it will reach the point [- + VAtV + (f/m)At],

where F is the force acting and m the effective mass in the neighbor-

hood of (r,v). The only change in N between the two points will be due

to collisions which scatter carriers into or away from the neighborhood

of (r,v). This can be described by writing

NIr + vAt,v + (F/m)At,t + At] - N(r,v,t)= 6 (2.1)

At At

where 6 N is the change due to collisions. In the limit as At approaches
c

zero, Eq. 2.1 becomes

aN T fFN= -v.VN - V N + N (2.2)at m v I ca

Equation 2.2 is the phase-space transport equation which des-

cribes the motion of carriers in the QFP approximation. The well

known Boltzmann transport equation is similar to Eq. 2.2, with a

collision term in the particular form which describes collision

effects in a dilute gas.

~j 1-15-
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Since N is a phase-space density, the densities of carriers,

mean carrier momentum, and mean carrier energy in coordinate space

can be defined in terms of the zeroth, first, and second velocity

moments of N:

n(r,t) = N(rv,t) d'v , (2.3)

m*n(r,t)ur(,t) f mvN(r,v,t) d'v (2.4)

and

n(rt)wGt) =J mv 12N(r,v,t) d'v (2.5)

where n is the carrier concentration, u is the average velocity, w is

the average energy, andm* is the average over effective mass. It

will be assumed that m is constant. This is reasonable so long as

most of the carriers are fairly close to energy minima.

The energy and momentum conserving transport model consists of

transport equations for the quantities n, u, and w. The equations can

be derived by applying the method of moments to Eq. 2.2, the phase-

space transport equation, as will now be shc v. It is convenient to

ignore the collision term in Eq. 2.2 for the time being; its effect on

the equations to be derived here is taken up in Section 2.2.

Part of the operation of taking a velocity moment of Eq. 2.2 can

be performed without regard for the form of a particular velocity

moment operator. If * is any such operator, a general moment of Eq.

2.2 is given by

4v MN = .VN - - V N d'v . (2.6)

Since * is a function of v alone, Eq. 2.6 can be written as
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a fr NOp d'v V fV vNtP d v M JNV v d'v , (27)

where it is assumed that N approaches zero rapidly enough at the limits

of integration that the quantity f V (NO) d3v is always negligible.

The carrier concentration is the zeroth velocity moment of N. With

= 1, Eq. 2.7 becomes

an _ V(n) (2.8)
at

This is the usual carrier continuity equation, though no diffusion term

appears in it explicitly. The velocity u is the true average over the

velocity distribution rather than the field-dependent "drift velocity"

used in the static drift-diffusion model, so that the diffusion effects

which must be treated there in a separate term are here incorporated

into u.

For velocity, 0 equals v, and Eq. 2.7 becomes

anu -. rV d3+. h.--id 3v
VdfvN ' vN

at j n)-a' )

- V- vv N d3v + • N[I] d3v (2.9)

where (I] is the identity tensor. The left-hand side of Eq. 2.9 can be

expanded and rewritten using Eq. 2.8, resulting in

aul n V"1 w-N d3v + - v.(n) (2.10)
at n J m n n

The remaining integral can be rewritten as

1 3V -)N dv + + - )N d 3

-IV.j~ [P] + unJ (2.11)
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where [P] is a tensor defined by

Pi U = m f N(vi - ui)(v, - uj) d 3v (2.12)

The remainder of the right-hand side of Eq. 2.11 can be expanded to

[a nui. i) 1-

1 . ax! m.+ nu - uV-(nu) + u-V (2.13)

Substituting for the integral in Eq. 2.10 results in

= - u.Vu + - V.[P] (2.14)
at m nm

Equation 2.14 describes the transport of average carrier velocity,

in which the divergence of [P] plays the role of a force field which

contributes to acceleration. The first term on the right of Eq.

2.14 is related to the divergence of velocity flux. It is not in

"conservation form,"'49 where the derivative operator acts on the

entire term, as in the corresponding term in Eq. 2.8. This is because

u is not, in fact, a conserved quantity in carrier transport; it

represents average, rather than total, momentum, and it is total

momentum which is conserved physically.

For energy, p equals mv.v/2. Substitution in Eq. 2.7 gives

anw m - NVv.v)
at 2 V" vNv.v d3v + • d'v (2.15)

The second of the two integral terms in Eq. 2.15 can be simplified:

NV,(V-V) d3v N ~ i---(V2) d~v
i a i

I.

S.J Nv d3v

nF.u (2.16)
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Since f Nu-u(v - u) d3v is zero, the first of the integral terms

can be written as

V. vNv-v d'v = . - u.u)(v - u)N d v + fuv.vN d 3

Sv. [(v -u).(v - U) + 2U.(v - u)]Tv-u)N d3 v

m

= v.(u.[p] + q) + nu.Vw + wV.(nu) , (2.17)

where the vector q is defined by

q. = " ~N(v - ui)(v - u).(v - U) d'v (2.18)

With the use of Eqs. 2.8, 2.16 and 2.17, Eq. 2.15 becomes

w - u-.vw + u - i v.(u[P] + q) (2.19)
at n

Equation 2.19 describes the transport of average energy w.

Here again, as in Eq. 2.14, the flux divergence term u.Vw is

in nonconservative form because average energy is not conserved

physically. The vector q is known in fluid mechanics as the heat

flow vector.
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2.1.2 Dependence on the Velocity Distribution. Equations

2.8, 2.14, and 2.19 describe the transport of velocity-averaged quan-

tities, but their solution requires knowledge of the form of the

velocity distribution N, which appears in the definitions of [P] and

q. Some form of the velocity distribution must be assumed for the

purpose of evaluating [P] and q. It should contain n, u, and w as

parameters, so that [P] and q will be consistent with these. At the

same time, specifying the distribution beyond its second velocity

moment is impractical, since the energy and momentum conserving model

gives no information as to hov the higher moments change with time.

For the purpose of finding [P] and q, it will be assumed that the

velocity distribution is displaced Maxwellian in form, which

makes the integrations in Eqs. 2.12 and 2.18 particularly simple.

The displaced Maxwellian form whose first three moments are consis-

tent with n, u, and w is

-- [2 Tj exp - 2- T: 7) (2.20)

where k is Boltzmann's constant, and T is the carrier temperature,
c

defined by

~kbTc M IV U~2Nd3VTc -- n 2 ~

l = - (v--v + u-u- - 2uo-v)N d~vn 2

m

= w- uu . (2.21)

Thus, the thermal component of w is 3kbTc/2, in keeping with the usual

idea of temperature.
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Changing variables to V' = V - u simplifies the integrations

in Eqs. 2.12 and 2.18. Since N is even in v', integration over all v'

of a product of N with a function that is odd in any component of

v' will give zero. Equations 2.12 and 2.18 then become

J Nv!v m d3v'
0 ij

- 0 , i~j

- nkbTc  , i = J (2.22)

and

q,= f 1 Nv! V 2 dv

= 0 , all i (2.23)

Then Eqs. 2.14 and 2.19 become

u -n -w (2.24)

at m _ -nM2 J

and

-T = - uVw + qE-u -w, (2.25)

3n Il2J

where q is the electronic charge and E is the electric field.

The forms in Eqs. 2.8, 2.24, and 2.25 of the collisionless

transport equations are equivalen' to the forms of the equations of

hydrodynamics describing the motion of an inviscid, compressible

fluid.5 0 The terms arising from [P] will be referred to as pressure

terms because the diagonal entries in [P] are just the pressure of

an ideal gas with concentration n at temperature T . The pressurec

terms account for the momentum and energy imparted to carriers

9 traveling down a pressure gradient in the carrier "gas."
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The energy and momentum conserving transport model is not

exact in the OFP approximation because it is in terms of only the

first three velocity moments of N, rather than the exact form of N.

It should be noted that q has been eliminated going from Eqs. 2.19

to 2.24 because the assumed displaced Maxwellian distribution is

symmetrical about u. Blotekjaer'' has suggested that the model can

be improved by retaining nonzero q in the energy transport equation.

However, Bosch and Thim5 1 used an energy and momentum conserving model

to simulate transferred electron devices and found that the inclusion

of nonzero q had little effect on predicted device behavior. It will

be assumed here that the transport model will be sufficiently accurate

for use in device modeling without the inclusion of q in Eq. 2.25.

It will also be assumed that carrier transport in IMPATTS is one-

dimensional, so that henceforward the transport equations can be

written in scalar form.

2.2 Collision Terms

This section develops terms for inclusion in the carrier, energy,

and momentum transport equations which take into account the effects of

the phase-space collision term. The procedure followed in the previous

section was to find velocity moments of the collisionless phase-

space equation. The collision terms will be found using a different

procedure, for reasons which will be discussed.

2.2.1 Physical Considerations. The modifications which are to

be made to the carrier, momentum, and energy transport equations,

Eqs. 2.8, 2.24, and 2.25, must account for the rates at which carrier

concentration, mean velocity and mean energy are changing because of

-22-
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collision processes. These rates of change depend in reality on the

exact form of the distribution function, but this is not known under

the energy and momentum conserving model. The problem becomes one of

accurately approximating the rates of change with functions of

n, u, and w.

An obvious way of doing so is to find the first three velocity

moments of the phase-space collision term and include them at the

appropriate points in the analysis presented in the previous section.

This is difficult to do, however, because the phase-space term can

seldom be known with much accuracy. It contains the distribution

function and functions describing the average rates and effects of

the various collision types; e.g., phonon emission and absorption,

impact ionization, impurity and defect scattering, and none of these

is always known exactly. The rate function for impact ionization is

ery difficult to determine,5 2
-
5
4 and while functions are known for

a number of other collision processes, these contain adjustable

parameters, whose values are in practice chosen to make theoretical

p3i.dictions agree with experimental measurements.

In effect, measured data are what determine numerical values

of the phase-space collision term. This suggests a more direct way

of arriving at the carrier, energy, and momentum collision terms:

that they be evaluated directly from this same data. This is the

procedure that will be followed here.

2.2.2 Forms of the Collision Terms. Before the collision terms

can be evaluated, the forms of their dependencies on the variables n,

u, and w of the transport model must be established. The collision

types to be accounted for (considered here in terms of their effects

-23-



on electrons) can be divided into three categories according to the

types of carriers (electrons and/or holes) they involve:

1. Collisions undergone by electrons which change the

concentration, energy, or momentum of electrons.

2. Collisions undergone by holes which change the concen-

tration, energy, or momentum of electrons.

3. Electron-hole interactions which change the concentra-

tion, energy or momentum of electrons.

Electron-electron interactions are not considered because they have no

effect on electron concentration, average energy, or average momentum.

The effect of electron-electron scattering is in any case to make the

distribution more nearly a displaced Maxwellian.
55

It will be assumed that all types of collisions which fit in

categories (1) or (2) above involve single carriers, and that their

per carrier rates are functions only of average carrier energy.

Blotekjaer and Lunde5 6 have shown that the latter assumption is reason-

able in the case of a displaced Maxwellian distribution. They derived

formulae for the energy and momentum relaxation times (defined below)

by taking moments of the phase-space collision term. Their results,

when written in terms of w, are independent of u to second order in u.

2.2.2.1 Same-Carrier Collisions. Categ.ry (1) above

includes all lattice collisions undergone by electrons. Of these, the

carrier concentration is affected by impact ionization, which contri-

butes a generation rate to the carrier transport equation:

[1 t = an , (2.26)

where a is the average per electron ionization rate and is taken to be
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a function of w. Its dimensions are inverse time, so it is different

from the conventional electron ionization rate employed in the static

model. The latter has dimensions of inverse length, as a carryover

from studies of gas discharges.5 7 In fact, the probability that an

individual carrier will cause ionization in unit time is dependent

upon its position in the energy band structure, a position which is,

in the nonstatic case, largely independent of its velocity. The

average of the probability over a group of carriers is therefore,

in general, almost independent of their average velocity, so the per-

unit-time ionization rate a as defined in Eq. 2.26 is more fundamental

than the conventional, per-unit-distance rate.

Average momentum tends to be reduced by collision processes in

Category (1), since they tend to randomize the velocity distribution.

Wile the per-carrier rates of the processes are functions of energy,

the resulting rate of loss of velocity cannot be a function of energy

alone. This can be seen if two situations of equal energy and concen-

tration are considered, one in which u is large and one in which u is

zero. If the collision rates are functions only of energy, exactly the

same number and types of collisions will be taking place in both

situations. In the first, u is decreasing comparatively rapidly because

of the randomizing effect of collisions. In the second, u is not

changing at all, since it is already zero. The rate of change of

velocity due to collisions is very different from one situation to the

other.

The velocity and energy dependence of momentum loss in collisions

belonging to the first category will be accounted for by writing

-25-
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[ au) (2.27)
J T

C 1  V

where T is an energy-dependent, effective momentum relaxation time.V

While the rate of loss of average energy to these collisions is

a function of energy alone, it is convenient for the purposes of the

finite-difference approximations to the transport equations developed

in Chapter III to model the energy loss rate in terms of an energy

relaxation time. The minimum energy, instead of being zero, is the

thermal energy w associated with the temperature of the lattice, so the

rate of energy loss will be written as

( w _ (w - w) (2.28)

c w

where T is an energy dependent, effective energy relaxation time. Thew

use of effective relaxation times in Eqs. 2.27 and 2.28 is in accordance

with the forms of the energy and momentum transport equations given by

Blotekjaer. 4
7

2.2.2.2 Opposite-Carrier Collisions. The second collision

category consists (from the point of view of electrons) of impact

ionization by holes. These contribute to the carrier generation rate,

tIan = OP , (2.29)

2

where $ is the per-unit-time hole ionization rate and depends on hole

energy. Hole ionizations also affect electron average velocity and

energy. If it is assumed that the electrons created by hole ioniza-

tions have random velocities, their contribution to the total electron

momentum is zero:
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= U + n a (2.30)
(at = F U(1. 2 (at)j2 *2c2

Then, combining Eqs. 2.29 and 2.30 results in

L aul O . (2.31)

2

The increase in the number of electrons dilutes the momentum and

increases the rate at which momentum relaxes toward zero. Similarly,

if the newly created electrons have average energy equal to wo, then

=- (w - w ).(2.32)
)Ct2 n 0
c2

2.2.2.3 Electron-Hole interactions. The third collision

category includes Auger recombination and direct exchange of energy

and momentum between electrons and holes. Sze5 8 gives an estimate for

the Auger recombination lifetime which is large compared to a millimeter-

wave period of oscillation under any circumstances which might normally

occur in an operating IMPATT. Blotekjaer and Lunde5 6 have estimated

the rates of energy and momentum transfer between electrons and holes

under the assumption of a displaced Maxwellian distribution. Under

ordinary conditions, their estimates are small in comparison to the

rates of energy and momentum loss which result from the numerical

values of the energy and momentum relaxation times as determined in

the remainder of this section. These processes are apparently of

minor importance in comparison to those in the first two collision

categories and are ignored in the present study, although their

inclusion offers no difficulty in principle.
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2.2.3 The Complete Transport Equations. Adding the collision

terms whose forms have now been determined to the carrier, velocity,

and energy transport equations results in

an - - anu + an + p, (2.33)
at ax

Du u x +  [n -I) - k (23- + u
at ax m 3mn 3x 2 u  2 n3

and

a + quE nu w - - mu - - + (w - w)
aax3n axL 2 Tw nJ

(2.35)

The complete energy and momentum conserving transport model consists of

seven equations, the electron and hole versions of Eqs. 2.33 through

2.35 together with Poisson's equation for the electric field,

aE (Ni- n + p) , (2.36)ax C

where Ni is the net density of ionized impurities.

2.2.4 Evaluations of Energy-Dependent Parameters. The

collision terms in Eqs. 2.33 through 2.35 contain ionization rates and

relaxation times which are as yet unknown functions of carrier energy.

These functions must be given numerical values before the energy and

momentum conserving transport model can be applied to device simulation,

although the form of the model is independent of the particular pro-

cedure used to obtain numerical values. The method of evaluation

which will be used here will be to determine the functions using

values of drift velocity and ionization rate which are known

-28-
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experimentally as functions of dc electric field. A mapping of the

desired quantities onto the dc field is obtained by writing simplified

versions of the transport equations applicable to the conditions under

which experimental measurements are made and substituting in the

known functions of field. A theoretically determined relationship

between energy and dc field is used to complete the mapping onto

energy. The resulting relationships etween ionization rates, relaxa-

tion times, and energy will be assumed to hold under all conditions.

This procedure for evaluating the functions of energy is not the

only possible one, but it has several advantages. It makes use of

comparatively simple equations involving experimentally measured values

of ionization rate and drift velocity, and guarantees that results of

the model will agree with experiment in the static limit. It predicts

forms for the energy and momentum relaxation times which are in accor-

dance with physical expectations, such as both relaxation times be-

coming decreasing functions of energy in the energy range where

impact ionization becomes significant. Finally, although the procedure

makes use of certain assumptions about the forms the transport equations

can take in the presence of spatially uniform dc electric fields, these

are all confirmed by simulation results presented in Chapter IV.

2.2.h.1 The Static Transport Equations. It will be assumed

that the circumstances to which experimentally measured values of

electron drift velocity and ionization rate are appropriate include

those of spatially uniform, dc electric field and negligible hole

concentration. Under these conditions, all time derivatives and hole

ionization terms drop out of the transport equations. The spatial

derivatives of u and w will be neglected. (Simulation results for the
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case of spatially uniform, dc field presented in Chapter IV support

the use of this assumption.) The stated conditions of zero time

variation and zero spatial variation of E, u, and w will be referred

to as "uniform" conditions, under which the transport equations

become

U n = an ,(2.37)ax

qET v 2 -r (W 1 I m 2) nu m 3nn W ax (2.38)

and
2u'r2UT ~w (w- 1 mu2) 3n .9

w-w °  quErw - 3mn a -x (2.39)

The two terms on the right-hand side of Eq. 2.38 can be identi-

fied with field-driven drift and diffusion down the carrier concentration

gradient. Equating the first of these with the conventional drift

velocity vd yields
dv

Smvd (2.4o)
v qE

Since vd is known as a function of the uniform electric field, Eq. 2.40

relates T to the field under the assumed static conditions.v

The right-hand side of Eq. 2.37 expresses the same quantity as

the conventional generation rate due to ionization by electrons.

Equating the two gives

an= J , (2.41)qn

where J is the electron current density, and the conventional field-n

dependent ionization rate has been labeled with an asterisk. Since

u is the average electron velocity and is a function of the uniform
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field, Eq. 2.41 is equivalent to

a = ua* (2.42)

This maps a onto E under uniform conditons. With the use of Eqs. 2.40

and 2.42, Eqs. 2.37 through 2.39 become

U V (w - L mu2)* (2.43)u d -3q-2

and

2 uT

w - w quEw - w- (w - i mu2)* (2.44)

Given the strength of the electric field, vd and a* are known in

Eqs. 2.43 and 2.44. But the two equations are still in terms of three

unknowns, u, w, and r , so there is not enough information to mapW

T, T1 and a onto the energy w. Equations 2.43 and 2.44 with any

mapping between energy and field will, however, guarantee that in the

limit of slow changes of the electric field in time and space, results

from the energy and momentum conserving model will agree with those

from experiment. The next step is to find a physically reasonable

mapping between the field and the corresponding mean energy for momentum

distributions in equlibrium with the field. Several calculations of

this mapping have been performed in the course of development of

theories for the field dependence of the ionization rates.
5 7'5 9'60

2.2.4.2 The Uniform Energy-Field Relationship. The esti-

mate for the distribution function which has been used in the present

work was developed by Wolff57 and has

N(c,E) = A e-m c 2/2F + B e -m c2 /2F Ei(mc2 /2F) ,0 < c < cc

= 0 , c >cc , (2.45)
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where A and B are normalizing constants, c is the carrier speed,

cc is the speed at the energy threshold for impact ionization, and

Fi is the exponential integral function. F is a function of the field

defined by

F (2.46)=3 'fl '

where X is the mean free path for optical phonon emission and lhw

is the optical phonon energy. X and the ionization threshold energy

are chosen so that the ionization rates predicted by Wolff's theory

are in -easonable agreement with measured values. Wolff assumed that

ionization takes place relatively quickly once a carrier climbs above

the energy threshold, so that negligibly few carriers are above threshold

at any one time.

Wolff's distribution cannot apply at low values of field because

it makes no allowance for equilibration between the carrier and lattice

temperatures as the field approaches zero. It will be assumed that the

distribution does apply when the field is at least 300 kV/cm, a value

at which the static ionization rate has begun to be appreciable. In

this range, the desired static w-E relation is just the second moment

of Wolff's distribution:

c

w(E) = 1 mc2N(c,E)c2 dc , (2.47)
fo

where the differential volume is a spherical shell in velocity space.

The integration in Eq. 2.47 must be performed numerically because of

the presence of the Ei function in the integrand.

For uniform fields of less than 300 kV/cm, it will be assumed

that Tw is given by a polynomial in the field. Knowledge of tw and

jig y n
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3t /aE at the boundaries of the interval is sufficient to determine

the coefficients of a third-order polynomial. Tw and 3Tw/3E at

300 kV/cm can be inferred from Eqs. 2.43, 2.44, and 2.47. The re-

maining two boundary conditions are provided by examination of w when

the field is close to zero. Since w is a minimum at zero field, it

must be a function of even powers of field in the neighborhood of

zero. It will be assumed that the carrier distribution is not signi-

ficantly heated at low fields so that

W = W + mu2 (2.48)
o 2

for fields close to zero. Since the impact ionization rate is negli-

qible at low fields, Eq. 2.44 gives

w = quEtw + w (2.49)

under this condition. Combining Eqs. 2.48 and 2.49 results in

=. (2.50)
wIE=O 2q

where p is the low-field mobility. The fact that w is even in E,

together with Eq. 2.48, implies that

a-E=O = 0 (2.51)

Though it is not important for the energy-field relation, it is

interesting to note that a similar analysis involving Eq. 2.43 leads

to

i = (2.52)v E=0  q

This can also be seen directly from Eq. 2.40.
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With rw (E) determined for 0 < E < 300 kV/cm, the w-E relationship

on this same range can be determined from Eqs. 2.43 and 2.44. It would

be more direct to assume that w itself is a polynomial in E on this

range, but this could result in w not monotonically increasing with E,

which is nonphysical.

2.2.4.3 The Functions of Energy. Given the full range

E-w relationship, the relaxation times and ionization rate can be

found as functions of w. The parameters used in this process are

shown in the Appendix for both electrons and holes. They include

phonon energy and creation mean free path, ionization threshold energy,

low-field mobility, effective mass, and parameters for the phenomenolog-

ical relationships between drift velocity, conventional ionization rate,

and static field. The lattice temperature is taken to be 500°K. The

effective mass values used are those which apply at the energy minima,

though they could be changed without affecting the form of the

transport model. Figure 2.1 shows the static E-w relationships for

electrons and holes, while Figs. 2.2 and 2.3 give the relaxation

times and ionization rates as functions of energy.

2.3 Relationship to Other Models

In Chapter I, it was mentioned that other nonstatic IMPATT

* models have been attempted. These will now be assessed. The condi-

tions under which the energy and momentum conserving model limits to

the conventional drift-diffusion model are also described.

2.3.1 The Energy Conserving Model. Kafka and Hess' l developed

an IMPATT model which includes energy conservation and energy-dependent

ionization rates, together with conventional field-dependent veloci-

ties. Their energy transport equation is similar to Eq. 2.35, although
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it includes a nonzero heat flow vector, but it is written in terms

of the total energy of electrons and holes together, so that the

model does not treat the electron and hole energies independently.

Kafka and Hess assert that their model becomes equivalent to the

conventional one when the flux divergence, pressure, and heat flow

terms are dropped from the energy transport equation. Since they

saw significant differences in their simulation results depending

upon whether these terms were dropped, they concluded that the terms

represent effects not allowed for by the conventional model which are

important factors in the operation of millimeter-wave IMPATTs.

Unfortunately, the reduced form of the Kafka and Hess transport

model is inconsistent. The pressure term in the energy transport

equation does not drop out unless the carrier concentration gradient

is zero, but a nonzero gradient must in fact exist when impact ioniza-

tion is present. Instead of disappearing, the pressure term in the

energy transport equation of the reduced model should take the form

which appears in Eq. 2.39.

It is not certain that this oversight affected the results

obtained by Kafka and Hess, but it may have done so. Under static*

conditions, all the terms in the energy transport equation become

small, except those which appear in Eq. 2.39. These remaining terms

determine a relationship between energy and field, hence, also

betweeen energy-dependent ionization rates and field. In the reduced

*The term "static" is used here in the sense as defined in Chapter I,
where it refers to conditions of sufficiently slow space and time

variation of the electric field to allow the carrier momentum dis-
tribution to reach equilibrium with the field.
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version of the model, one of the terms in Eq. 2.39 is missing, and a

different relationship between ionization rate and field results.

What Kafka and Hess may in effect have done was to perform two

essentially static simulations with different sets of ionization rates.

This porsibility is consistent with the facts that they were able to

make their results from the two models agree by adjusting the ioniza-

tion rates, and that their plot of the carrier temperature profile

shows relatively constant temperature and field across the ionization

region of their device, indicating that the carrier momentum distri-

bution did reach equilibrium with the field in precisely the region

where impact ionization was taking place.

2.3.2 Energy and Momentum Balance Models. Constant and co-

workers 39
,
40 have developed two Read-type IMPATT models based on energy

and momentum balance relationships. Their first model applied these

relationships to the IMPATT drift region while treating the ionization

region in the conventional manner.39 The second applied the energy

balance relationship, with energy-dependent ionization rates, to the

ionization region, while assuming saturated drift throughout the

device. 4 0  (This was done partly in an effort to confirm the effects

of avalanche delay due to energy conservation which had been reported

previously in connection with certain results from the present

work. 61'6 2) Neither of the energy and momentum balance models treats

the entire device in a unified way.

The balance relationships usedby Constant and Salmer are

similar to those proposed by Shur6 3 and are equivalent to

du _qE - u (2.53)

dt m T
v
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and

dw 0 0
7- quE - , (2.54)dt T

w

where T is assumed to be constant. These relationships are Just

approximate versionsof Eqs. 2.34 and 2.35. They omit the effects of

momentum and energy flux divergence, of the pressure terms, and of

the spatial dependence of u, w, and E. The balance models make allow-

ances for nonequilibrium between the carrier velocity distribution and

the electric field but tend to overestimate its effects, since they

assume that nonequilibrium extends uniformly over the entire drift or

ionization width, ignoring the fact that carriers will tend to approach

equilibrium with the field as they traverse a region of uniform field.

It should also be noted that diffusion effects, which are included in

even the conventional static model, are not allowed for in Eqs. 2.53

and 2 .54.

2.3.3 The Drift-Diffusion Limit. If the difference between

the energy and momentum conserving model and the conventional drift-

diffusion model lies in whether nonequilibrium conditions are allowed

for, then the two models should be equivalent once equilibrium is

reached. This is indeed the case. When the field changes slowly in

time and space, the velocity transport equation reduces to Eq. 2.38.

Substituting Eq. 2.38 for u in Eq. 2.33 gives

an _ __ ,- a T kbT an

at - x m +j

-a- (n*E)+ D + G (2.55)
+T ax x
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where
qT v- v (2.56)

m

D - (2.57)

and G is the carrier generation rate. Equation 2.55 is just the

standard drift-diffusion equation for electrons with mobility 0 and

diffusion coefficient D. D and p satisfy the Einstein relation in

terms of T . D can be calculated as a function of field from Eq.c

2.57 using the static relationships between field, energy, and

relaxation time found previously. Results are shown in Fig. 2.4. This

static D(E) relation is a consequence of the assumed static w(E); one

mapping implies the other. It would be possible to assume D(E) and

derive w(E), but comparatively little isknorn about the physical situa-

tion in Si from which to perform ab initio construction of D(E),

especially at high field strengths. An apparently reasonable choice of

D(E) can easily lead to an unreasonable w(E), such as one where w is

not monotonically increasing with E or where w reaches values well in

excess of the ionization threshold. The latter would, in fact, result

from the D(E) assumed in at least one IMPATT simulation study based on

the drift-diffusion model.
6
4

2.4 Summary and Conclusions

An energy and momentum conserving transport model for carriers

in Si has been developed. The model consists of transport equations

which are velocity moments of the phase-space transport equation. The

collision terms are evaluated by requiring that under conditions of

slow time and space variation of electric field the results of the

-
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model must be consistent with experimentally measured carrier

velocities and ionization rates.

The model is free of the chief limitation of the conventional

drift-diffusion model in that it does not assume equilibrium between

the carrier velocity distribution and local electric field. It is

also more general and self-consistent than all previous attempts to

produce nonstatic transport models applicable to IMPATTs.
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CHAPTER III.

NUMERICAL METHODS FOR IMPATT DIODE SIMULATION

This chapter describes the numerical implementation of the

energy and momentum conserving transport model which has been used to

simulate the operation of Si IMPATT diodes. The organization of the

chapter is as follows. In Section 3.1 a set of normalizations for

finite-difference approximations to the transport equations is

developed. Section 3.2 considers the stability and accuracy of various

finite-difference forms and describes the form which has been chosen

for the simulation program. Section 3.3 explains how the program

applies spatial and temporal boundary conditions to the finite-

difference equations, and Section 3.4 describes the findings and

conclusions of this chapter.

3.1 Normalizations

There are a number of constants, such as time and space step

length, which appear repeatedly in finite-difference approximations

to the transport equations developed in Chapter II. If the finite-

difference equations are normalized with regard to these constants,

the equations are simplified,and efficiency is greatly increased.

This section describes the set of normalizations which has been

used in the present study.

The transport equations are repeated here for convenience:

n anu + n + p (3.)
at ax
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uu 2_ a 2F n(w I mu2)lu[- +B 1] (3.2)
at, ax in 3rn ax L 2  T nl (

and

_w aw 2 a 2  + 8-+ -u-+ quE - [nu (x u - w
at ax 3n ax20 (I n

(3.3)

Their general finite-difference approximations are given by

At - --Ax (nu) + an + p , (3.4)At AX

6tu 6Xu qE 2 6+x
-- - u -_ u + -  W Mu2 U 1 8

At AX m 3mn Ax 2  n

(3.5)

and

6tw 6 2 x 1 pAt ~U x + qluE - -2L [nu u(w - mu -w-w O  +n3
At Ax 3n AX LwJ )Lt- 0)

(3.6)

where 6 represents any finite-difference in time, 6 is any finite-

difference operator in space, and A is an incremental operator.

(Only constant At and Ax will be considered.) When the same notation

is used, the finite-difference approximation to Poisson's equation is

6 E
x - _(N - N + p - n) . (3.7)

Ax e d a

In Eq. 3.4, use of a normalized velocity

u = uAt (3.8)
Ax

and normalized generation rates

2-45-I I
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a_ = aAt,BAt (3.9)

gives

_ (nu) + an + _ (3.10)

where an underscore denotes a normalized quantity. As the normalized

form of Eq 3.4, Eq. 3.10 contains neither Ax nor At. If Eq. 3.5 is

multiplied by At2/Ax, the result is

t2[ At2  1 2 At + p

x m Ax 3n xL v nu

(3.11)

This suggests that energy, relaxation time, and electric field be

normalized as

At2
= wAx 2  

(3.12)

t (3.13)-- At

and

E = EAt2  (3.14)
-- AX

The normalizations given by Eqs. 3.8, 3.9, and 3.12 through 3.14 elim-

inate Ax and At from Eqs. 3.5 and 3.6. The electric field is not

normalized with respect to effective mass because the field appears in

both the electron and the hole transport equations, where two differ-

ent values of effective mass apply.

Using the normalized field in Eq. 3.T gives

C d a n) (3.15)
- a?-+6-



so that it is convenient to define a normalization for carrier and

doping concentration by

n = q2At2 n (3.16)

n

Normalization of the carrier concentrations has no effect on Eqs. 3.4

through 3.6.

Along with Eq. 3.10, the normalized versions of Eqs. 3.4 through

3.7 are

't4 = -_U'x-u + m 3n x  
2 - ' + _-- " (3.17)

6tw = - u6xw+-- -3n x 2 - w +

(3.18)

and

6xE =(Hd -aN a+ p n) (3.19)

Table 3.1 summarizes the normalizations. Henceforth, the underscore

notation for normalized quantities will be omitted, and when it is not

apparent from context whether the quantities referred to are normal-

ized or not, this will be stated specifically.

3.2 Finite-Difference Operators

There are many possible forms for Eqs. 3.10, 3.17, and 3.18,

corresponding to different forms of the operators 
6 
x and 6t , and to

different choices of time levels at which the various spatial difference

terms are evaluated. An optimum finite-difference form will be one

which is both accurate and efficient, but the goals of maximum

-
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Table 3.1.

Normalizations for Finite-Difference Forms

of the Transport Equations

uantity ymbol Normalized Quantity

Average velocity u u = u(At/Ax)

Average energy 
w = (w/m)(At/Ax)

2

Particle concentration n nn(q2At2)/

Electric field E E (qEAt 2 )/(Ax)

Relaxation time 
= /At

Ionization rate 
aAt,Odt
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accuracy and maximum efficiency are incompatible. This section

shows how a compromise between the two has been reached.

It will be assumed that the ratio Ax/At will have some minimum

value which will be given by the form of the Courant-Friedrichs-Lewy

condition which applies to whatever particular numerical form is

chosen for the transport equations. If this ratio is always given

its minimum value, the normalized drift and pressure terms in Eqs.

3.10, 3.17 and 3.18 become independent of Ax and At, while the nor-

malized source (carrier generation and field) and relaxation terms

become proportional to At.

In order to resolve events which take long enough in relation

to the RF period to be of importance to device operation, At itself

must be sufficiently small. The time step will become smaller as

frequency increases, and vice versa. In the limit of very small At,

the drift and pressure terms will dominate the normalized finite-

difference equations, and in the limit of large At, the field, gener-

ation, and relaxation terms will dominate. This is reflective of the

shift from static to nonstatic transport as device speed increases and

the characteristic time scale becomes shorter. In a comparatively slow

device, static equilibrium between the field and relaxation terms ade-

quately describes the transport of carriers. In a faster device,

the nonstatic effects of drift and pressure on the momentum and

energy become important.

It is convenient to begin a discussion of finite-difference

approximations to Eqs. 3.1 through 3.3 at the limit of very short

time scale and small At, when the normalized source and relaxation

terms can be neglected. If it is to be useful in general, any
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approximation must be useful in this limit. Therefore, the first

part of this section is concerned with the sourceless and collision-

less version of the finite-difference model, and the second part with

the further considerations which arise when the source and collision

terms are restored to the finite-difference equations.

3.2.1 Transport in the Limit of Short Time Step. The source-

less and collisionless forms of Eqs. 3.10, 3.17, and 3.18 are

t = - 6x(nu) , (3.20)

6tu = U6U - nx w - U2) (3.21)
t x 3n L 2 j

and

= -U 6 w SX nu(w- U2)l (3.22)
t x 3n 2

Various forms of the difference operators will now be considered.

3.2.1.1 Forward-Time, Upwind Drift Differences. Using

forward-time differences in Eqs. 3.20 through 3.22 requires less

storage than centered differences, and it is simplest to evaluate all

the spatial difference terms at present time. Upwind differencing

tends to preserve the "transportive"* property of drift, while

centered differencing of the pressure term in Eq. 3.21 will reflect

the fact that acceleration due to pressure differences acts in both

the upstream and downstream directions. The pressure terms in Eq.

3.22 can be interpreted as keeping track of the work done by carriers

in drifting through the pressure field, so upwind differencing is

appropriate.4 9 A reasonable form for Eqs. 3.20 through 3.22 would

*The term "transportive" is applied here as it is defined in
Reference 49, p. 67.
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therefore appear to be

n. = nj - nj(u - u - uj(n - n ) (3.23)

u .A : t , - u . - - -- [ w t I ( ) 2 ] (~ -n j _ , )
~j 3ni t j i

J

t t t t t t (
+n[wJ+ -w - uj + - ] (3.24)

,] (j+l uJ I

and

t+At w t t 2 [ - (u t (n t )ut

ij j 3n wt j 2 ) _ _I

+ (u - Ujt )n ]  + u jnj[w - w j _ - uj(u j - u j )] , (3.25)

where subscripts denote position in the space mesh and superscripts

position in time.

3.2.1.2 Stability Analysis. The stability of Eqs.

3.23 through 3.25 can be examined by extending the usual Fourier

stability analysis to three variables in the way outlined by

Potter. 50  The solution to Eqs. 3.23 through 3.25 at a point in time

is a vector function on the points of the space mesh. This function

has a Fourier decomposition which can be denoted by

t
nj

t -t -t iJ m"

u = S-M mt e (3.26)

tw j
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where

$ = mW/M , (3.27)

i is the square root of -1, and M is the number of points in the mesh.

The numerical error C present in the solution has a similar decom-

position. When the error is small, it changes linearly across a

time step, and the change in each of its Fourier components can be

expressed in terms of an amplification matrix (G]:

S+At = ([I] + [Gt (3.28)

The identity matrix in Eq. 3.28 accounts for the effect of the

forward time operator used in each of Eqs. 3.23 through 3.25. The

particular form of [GmI corresponding to these equations can be_t
found by substituting the Fourier series for E into Eqs. 3.23 through

3.25, resulting in 2M + 1 component equations similar to Eq. 3.28.

Linear change in the error means that the variable coefficients of

the spatial differences can be treated as constants across each time

step, so [Gm ] is given by

[Gm

- u(l - e ) - n(l - e m) 0

-i -ism

- (w- 1 u 2iu 2_-Ysin 8

2u ( u 2 3)(l e m 2 - u 2 )(l - e u(l - e m)- (w- - e)- w - m)

(3.29)
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Stability of Eqs. 3.23 through 3.25 requires that no component

of the error be able to grow in magnitude across a time step. Equa-

tion 3.28 implies that this will be true if, for all - 7r < B< r,

all the eigenvalues X of [G M] satisfy

1l + X12  < i (3.30)

It is tedious to solve the characteristic equation of [GmI

directly, but there is a simpler way of getting the same information.

The upper-left entry in [G 1, which results from the upwind drift

operator, repeats in the other two entries on the diagonal, so

[G is the sum of two simpler matrices:

[G] = - -e m )[I] + [G'] , (3.31)

where

0 -n(l-e m) 0

- 2i 1 si 2iu Sin 2i n-(w--u2  sin Bm 7 nB - - inB
3n 2 m 3 m 3 m

2u 1 _2 2 m )

- (w-t )(l-e m ) (w-u )(1-e m) 211

(3.32)

Any eigenvector of [G'] is an eigenvector of [Gm] , and when X' is an

eigenvalue of [Gm], the corresponding eigenvalue of [G ] is given by
-im

X- u(l - e m) (3.33)
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The characteristic equation of [G'] ism
-i~ '( 'm . i-4 1 eim

'[X'2 + L '1(I -ia - i sin B )  -- (w- - u2 )(l - e sin 
AL 3 -e 1snm 9 2 m

2i' !u
2) -i 1) = o , (3.3Ih)

2-(w - 2)(i -e sin Bm3 2m

which results in A' = 0 and
I

-i8 i -im

3' = - - 3 m - i sin 8 m ) + -[(1 - e - i sin 8 )2
2,3 73 m m

1 u2) -i8m1

+ lOi(w - U) sin am(l - e MW (3.35)

X1 corresponding to X' satisfies Eq. 3.30 for any value of am .I1

A' and X' are somewhat complicated functions of 8m, but they can be
2 3

simplified by noting that w is nearly always large in comparison to

u2. The magnitudes of A' and A' are largest when am = n12,
2 3

when the two eigenvalues are given approximately by

' - _ [0 w(i - i)] (3.36)
2,3 3 9

When the plus sign is used, Eq. 3.30 becomes approximately

11 - 1.33u + o.h8Fw + 1.2i/l 2  < 1 (3.37)

Equation 3.37 is seldom if ever satisfied under the conditions

which occur in an operating IMPATT. This means that the numerical

method given by Eqs. 3.23 through 3.25 is unstable in the limit of

small At. It will be shown, however, that when At is sufficiently

large, the method can be stabilized by proper treatment of the

relaxation terms, so that it has been possible to use the method as
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shown in Eqs. 3.23 through 3.25 in much of the diode simulation work

performed in the course of this study.

3.2.1.3 Forward-Time, Centered Space Differences. In

order to develop a stable method, it is useful to examine another

form of Eqs. 3.20 through 3.22. The reason for the instability of

Eqs. 3.23 through 3.25 is that w appears in the real part of X,

where it adds in Eq. 3.37 to the number one which appears from the
-im 8

forward-time operator. The presence of the quantity 1 - e m in

[G'] is what causes this. If all the upwind differences which contri-
m -i m

bute 1 - e are changed to centered differences, they will instead

contribute i sin Bm and [G1] will become

[G'] =m

0- in sin 8 0

2i(W 1 2) 2iu 2i
3- - sin 8m  - sin - sin 8 m

2iuW2i 2 2iu.
_ - u sin8 -- (w --u ) sin 8 - - sin 83nm 3 2m 3 m

(3.38)

The eigenvalues of [GI] are now
m

' 0

and

' = i sin a I -"°(w - I (3u-3])
210 -1 u ) (3.39)

But now when 8m = T/2, Eq. 3.30 becomes
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10 1 (340
11 ± i- ( U2[ '12- < 1 (3.4o)

Equation 3.40 can never be satisfied, so the modified version of Eqs.

3.23 through 3.25 is no more stable than the original.

3.2.1.4 The Lax Method. There is a stable form of

Eqs. 3.20 through 3.22 which is explicit and involves just two time

levels. It is based on a numerical form developed by Lax6" for the

usual equations of hydrodynamics, which are similar to Eqs. 3.20

through 3.22. This form uses centered differencing for all differ-

ences in space but differs from the one just described in that it

uses a modified forward-time operator:

t+t 1 t t
6txj = (X+At -4.(j I +x_) , (3.41)

where x is any of the normalized transport variables. The new time

operator changes Eq. 3.30 to

1cos am + X12 < 1 , (3.42)

and centered drift changes Eq. 3.33 to

X -iu sin 8 +x' . (3.43)

mm
For the Lax method, [Gm]1 and its eigenvalues remain as in Eqs. 3.38

through 3.39, so Eq. 3.42 requires

II + (L( 1u2)]i < 1 (3.44)

In terms of unnormalized quantities, Eq. 3.44 requires

> + U,~ 1) (3.45)
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Equation 3.45 is a statement of the Courant-Friedrichs-Lewy

condition as it applies to Eqs. 3.20 through 3.22. The right-hand

side is the sum of the advection speed lul and the speed at which a

pressure disturbance can propagate.50 The latter is analogous to the

speed of sound in a fluid. This speed is often several times larger

than juI when carriers in a semiconductor are considered, so Eq. 3.45

restricts At to be several times smaller in relation to Ax than does

the least restrictive condition which may apply to simulations using

the drift-diffusion model, i.e.,3 8

Ax > V (3.46)At - d

where vd is the static drift velocity. (The form of Eq. 3.45 also

illustrates the usefulness of having the same Ax/At in all simula-

tions, since the stability of numerical methods tends to depend on

this ratio.)

The stability of the Lax method is achieved at the price of a

comparatively large amount of numerical diffusion. The method intro-

duces a spurious diffusion term into each transport equation, with a

diffusion coefficient given by4
9

Ax2[l - u 2 At2
D = - At (3.47)
n 2At X

where u is the unnormalized drift velocity. Since Eq. 3.45 usually

requires that Ax/At be at least 5 x l0T cm/s, D can easily exceed

n

the effective diffusion coefficients derived in Chapter II.

3.2.1.5 Three-Level Schemes. Numerical diffusion can

be substantially eliminated by the use of a three-time-level

scheme. A number of such schemes have been developed for the

is 5 -57- I-
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hydrodynamic equations and are generally considered to be variations

on a scheme originally presented by Lax and Wendroff.6 6 Each of

these schemes is subject to the same stability limitation, as given

by Eq. 3.45, as the Lax method. 4
9 The original Lax-Wendroff scheme

is two level, but is somewhat complicated. Richtmyer 6 7 proposed

an equivalent but simpler two-step, three-level scheme. Richtmyer's

method gives a useable solution only at alternate points on the space

mesh and only on alternate time steps, so a variation developed by

Burstein 6 8 has been chosen for use in the simulation program. In

this method, the transport equations are considered as a single-

vector partial-differential equation:

ai _ __

- . (3.148)at ax

Equations 3.20 through 3.22 can be considered to be in the form of

Eq. 3.48 if the variable coefficients of the space derivatives in

Eqs. 3.21 and 3.22 are treated as constants across each time step.

The first step in Burstein's method uses the Lax method to

find a trial solution at the half time and half space step:

f+At/2 1 -- + -t At (-.t
2 +1 -+ j+1 - J) (3.49)

The second step uses these centered values to evaluate $ and advance

the solution across a full time step:

ft+At = t At t1 +At/2 -t+At/2)
f f + - -j_ , . (3.50)

Burstein's method is stable provided Eq. 3.45 is satisfied, and it

introduces little spurious diffusion. Its usefulness is obtained
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at the cost of sacrificing the transportive property of upwind

drift and of increased computational effort in comparison to a

one-step scheme. Space centered differencing does give some ad-

vantage in terms of program simplicity because it requires no special

treatment of velocity reversals.

3.2.1.6 Other Schemes. It should be noted that methods

other than the Lax and Lax-Wendroff types may be applicable to

Eqs. 3.20 through 3.22. Richtmyer6 9 describes a two time level sbheme

for the hydrodynamic equations which ad:ances u in time before it

does n and w, but he gives an apparently erroneous stability analysis.

It is unclear whether this scheme would adapt successfully to the

transport equations used in this work. No implicit scheme has

achieved any significant degree of acceptance among fluids simu-

lators, though a workable one has been developed by Polezhaev.
°

This scheme is unfortunately only applicable to "supersonic" flow,

in which u is greater than the square-root quantity in Eq. 3.h5.

Several other implicit schemes have been tried on the computer in

the course of the present work. None was found to be reasonably

accurate and to have greater stability than the Burstein method.

3.2.2 Source and Relaxation Terms.

3.2.2.1 Carrier Generation and Electric Field Terms. The

impact ionization term represents exponential growth of the carrier

concentration, with growth rate a or 8 (unnormalized). In the

simulation of millimeter-wave devices, the product of growth rate

and time step is much less than one, so a first-order approximation

of the exponential growth is sufficiently accurate:

t tGt = ant + 8p (3.51)
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In the simulation of microwave devices, the time step can become

large enough that a second-order treatment of generation is

required, 38 but this will ordinarily occur only in situations where

the static transport model is adequate for describing device

behavior.

The terms containing the electric field in the energy and

momentum transport equations are evaluated at present time. The

coupling of the field terms to space-charge density through Poisson's

equation introduces restrictions concerning the dielectric relaxa-

tion time and the Debye length. Preventing numerical overshoot of

the charge concentration in low-field regions requires that At be

shorter than the dielectric relaxation time,3 8 but this is usually

less restrictive than Eq. 3.45 when Ax is chosen for reasonable

spatial resolution in a millimeter-wave device. The device boun-

daries are not described with precision when Ax is greater than the

Debye length, which can be on the order of 10- 7 cm in contact

regions, but, as shown by results given in Chapter IV, little is

gained in the description of overall device behavior by making Ax

so small.

3.2.2.2 Relaxation Terms. The relaxation terms represent

exponential decay of u and w. Both the energy and momentum equations

have the form

= s- , (3.52)

t

where S is a "source" term representing the influences of the field

and space derivative terms. The exact solution of Eq. 3.52 is

f(t + At) - [f(t) - ST) e-At /  . (3.53)
e + ST (-3
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The simplest finite-difference approximation to Eq. 3.52 is first

order in time, having the decay term P.raluated at time t, giving

ft

ft+At = ft + S~t - I- At (3.54)
1 2 T

Bosch and Thim5 1 used an energy and momentum conserving model to

simulate the operation of transferred electron devices. They used

a second-order, present-time form of the decay term, which gives

ft+At = (ft - S I - A-t + I(t)2] + ST (3.55)
2 2 - 21

Another possibility is to perform first-order evaluation of the decay

term at advanced time, which still gives an explicit solution. The

first-order, advanced-time approximation to Eq. 3.52 is

ft+At ft + SAtf t+At = ft + At T 3 __7 . (-6
3 f +St T 1 + (At/T) " (3.56)

Setting S to zero in Eqs. 3.53 through 3.56 gives the behavior

in each of any numerical error which may be present at the beginning

of the time interval. Error is plotted in Fig. 3.1 as a function of

At/T for each of the forms in Eqs. 3.53 through 3.56. The figure

shows that stability of f2 and f2 requires At be less than twice the

relaxation time because the magnitude of error in these two approxi-

mations grows if this limit is exceeded. This would be a severe

restriction on At in actual simulations, since the momentum relaxa-

tion time in Si can be less than a hundredth of a picosecond. No

such time-step restriction applies to f,5 so it has been chosen for

use in the diode simulation program. f3 has the additional advantage

of being in agreement with f(t) as given by Eq. 3.53 in the limit of

large At. This is not true of f or f
1 2
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Advanced-time relaxation can also improve the stability

which is associated with a numerical form of the spatial derivative

terms. This can be seen by examining its effect on the amplification

matrix. With the inclusion of source terms and advanced-time relaxa-

tion in the transport equations, Eq. 3.28 becomes

t+At [R]([I] + [Gm]) (3.57)

where R is a relaxation matrix given by

1 0 01

[R] = 0 [1 + (1/Tv ) + a(p/n)] -  0

0 0 [1 + (1/x w ) + 0(p/n)] -

(3.58)

Since the diagonal elements of [R] are less than or equal to one, the

magnitudes of the eigenvalues of the right-hand side of Eq. 3.58 are

smaller than the magnitudes of the eigenvalues of [I] + [G m ] alone. If

the latter are not significantly greater than one, use of advanced-

time relaxation can stabilize a method which is otherwise unstable.

Equation 3.37 for the eigenvalues associated with the numerical

method given by Eqs. 3.23 through 3.25 indicates that keeping the

eigenvalue magnitudes close to one requires that normalized u and w

be sufficiently small. This in turn requires that Ac/At be small, so

that the stability requirement for the method in Eqs. 3.23 through

3.25 with advanced-time relaxation amounts to a Courant-Friedrichs-

Lewy condition. In practice, it has been found that the method is

stable if Ax/At is greater than approximately 5 x 101 cm/s and At is

greater than approximately 0.02 ps.
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3.2.2.3 Source and Relaxation Terms in Burstein's Method.

If requirements for spatial resolution dictate that Ax be

extremely small, the CFL condition can require that At be so small that

the normalized diagonal terms in the matrix [R] in Eq. 3.58 approach

one. If this happens, advanced-time relaxation will no longer provide

numerical stabilization, and a Lax-Wendroff-type scheme for the spa-

tial derivative terms in the transport equations must be used. Such

schemes advance across a time step in two stages, so the question

arises as to whether the source and relaxation terms should appear in

both stages or whether the effects of these terms over a time step

should be lumped into the second stage only. The latter approach has

been followed in the present work. Conceptually, this treats the

influences of the pressure and drift terms, and those of the source and

relaxation terms, as acting in parallel across a time step, just as

in a one-step scheme. The approach has been chosen for two

reasons. First, the time-centered intermediate result obtained in the

first step of a Lax-Wendroff scheme is not a "true" solution, but

only an estimate upon which to base the second step. Evaluation of

the source and relaxation terms should be done in terms of the gen-

uine solution, which is not available as a time-centered quantity.

Second, incorporation of source and relaxation terms only in the

second step simplifies the method somewhat.

Burstein's method with source and relaxation terms in the

second step can be represented as follows. The first step remains

exactly as in Eq. 3.49, while the second step becomes

f+At [R](f - + + s) (3,59)

f(3,59)
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where F and T are defined by Eq. 3.48, [R] is the relaxation matrix

given by Eq. 3.58, and S is a vector representing the contribution

of carrier generation and the electric field.

It has been found that the presence of source terms in Burstein's

method can cause overshoot in the solution to occur near inflow

boundaries. The overshoot can be eliminated by using an appropriate

form of the two-step method. The sourceless carrier transport equa-

tion can be written in two numerical forms arising out of the compact

and expanded forms of the spatial derivative term:

_ =-nU (3.60a)

at ax

and

an n au an
- - -n -- u- - (3.60b)

In the continuum, there is no difference between Eqs. 3. 6 0a and 3.60b.

If their forms are carried through to the numerical method, they give

rise to the following first steps in the method,

t+At/2 = t1 I t t t t
n I (n + n -(ntut+ - n u ()(3.61a)j+P 2 j J+i 2 +ul J

and

t+At/2 1 t t 1 t t t t
n J+ = (nj + n +1 ) - (nj + n j+ i )(u + 1 - u)

2~ jj

1 t t t t
(u j + uJ+ )(nj+ - n ) , (3.61b)

and the following second steps,

t+At t t+At/2 t+At/2 t+At/2 t+At/2
n = n -n + + nI u_ (3.62a)

and
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t+At t -t t+At/2 t+At/2) t, t+At/2 t+At/2)
n n -n (u1I - u_ )-u(n+ -n

(3.62b)

In Eq. 3.21b the coefficients n and u of the space derivatives are

centered at the half space step.

Equations 3.61a and 3.61b are numerically equivalent, but there

is a difference between Eqs. 3.62a and 3.62b which gives rise to

different overshoot properties. At the inflow boundary in an IMPATT,

carrier concentration and velocity can both change rapidly in space

because carriers enter the diode from a low-field region Vhere they

are minority carriers. Once inside, they accelerate and undergo

impact ionization, and the resulting changes in n and u can be so

rapid as to cause the right-hand side of Eq. 3.6 2a to be negative near

the boundary, so that the carrier concentration overshoots past zero.

Equation 3.62b contains cross products between n and u at different

points in space, so the tendency to overshoot is much reduced.

3.3 Initial and Boundary Conditions

The transport equations determine their solution to within

three sets of conditions: the initial conditions on the simulation

variables throughout the space mesh, the boundary conditions on the

simulation variables (usually defined at the edges of the mesh), and

the relationship between terminal current and voltage which is deter-

mined by the interaction betwee the diode and its external circuit.

This section discusses the forms and methods of application of these

conditions in the simulation program.
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3.3.1 Initial Conditions. The IMPATT simulation program is

"stand alone" in the sense that it need not start from initial condi-

tions provided by a dc solution to the transport equations. The

program can either set up initial conditions following guidelines

provided by the user, or it can start from the solution obtained at

the last time step of a previous simulation run.

The use of an arbitrary starting condition which might never

arise in the course of actual device operation might appear to be

in contradiction to the transport equations, but any starting condi-

tion which does not overspecify the initial solution is mathematically

possible. Experience with the simulation program has never turned up

a situation in which an arbitrary set of starting conditions did not

evolve rapidly toward a physically realistic solution as the simula-

tion progressed. Care must only be taken to set the initial conditions

so that the starting transient does not cause anrealistically large

values of u or w to occur momentarily, since this can violate the

condition of Eq. 3.45.

3.3.2 Spatial Boundary Conditions. Even though the transport

equations are first order, centered differencing requires that boundary

conditions be supplied at both ends of the space mesh. For this

purpose a psuedo mesh point is established outside each end of the

space mesh, and it is at these two points that the boundary conditions

are applied. While many sets of boundary conditions are possible,

one has been chosen for the majority of the present work which com-

bines simplicity with a reasonable correspondence to the limited

knowledge which exists concerning the conditions in the contact

regions of an IMPATT under large-signal operation. At an inflow
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boundary, a Dirichlet condition is applied to each unknown

while at the outflow, a Neumann condition with constant slope

is applied. The outflow condition is chosen to maximize the

accuracy of the finite-difference scheme.4 9 The Dirichlet inflow

conditions are

2n.
n - (3.63)b N b ,

b=O 0 (3.64)

and

wb wo  , (3.65)

where Nb is the doping concentration in the contact region. The

inflow conditions describe the state of minority carriers

in a region with zero electric field. They might seem to imply

that no minority current can enter the device, but it is possible

for a finite amount of minority current to cross the device boundary,

which is located halfway between the pseudo point and the first

actual mesh point. This current is small, and the bulk of the

reverse saturation current is provided for by assuming a uniform

rate of thermal generation throughout the device:

J sat
Gt sat (3.66)

where Jsat is the reverse saturation current density, and L is

the device length. Some results with boundary conditions differ-

ing from Eqs. 3.63 through 3.65 are presented in Chapter IV.
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3.3.3 The Device-Load Interaction. Updating the electric

field at each time step requires that some relation between the

terminal voltage and current be supplied. One way of doing this is

to convolve the past values of current with the impulse response of

an external circuit after every time step. 71 This has the obvious

drawback of requiring that many convolution integrals be evaluated

in the course of a simulation. A simple way of centering the current

in the upcoming time step using present terminal voltage exists,
38

but it does not allow the use of simple capacitive branches (such as

an RF source with dc block) in the external circuit. Bauhahn

and Haddad6 4 imposed a sinusoidal RF voltage at the device

terminals. While their method requires no circuit tuning or source

adjustment in order to obtain a desired RF terminal voltage amplitude,

it does require iteration on the dc voltage in order to obtain a

desired dc current, and it does not allow the simulation of genuine

transients in connection with realistic external circuits. A state

space approach 7 2 to the device-circuit interaction has been found to

be the most useful in the present work.

The load routine used in the simulation program is designed

to impose a sinusoidal RF voltage on the device terminals in a

self-consistent manner. The circuit model used by the routine is

shown in Fig. 3.2. The diode is represented by a particle current

source J in parallel with the diode depletion capacitance Cd
pd

(normalized to unit area). The external circuit consists of a de

current source in parallel with an HF voltage source VRF, series

resistance R, and blocking capacitor C. The strength of J at any
? pj point in time can be found from
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P -- 0q(unn + upp) dx , (3.67)

where L is the device length.

The time evolution of the blocking capacitor voltage V andc

the diode voltage Vd are given by

dV
c Jdt C 

(3.68)

and

dV d _1

d = - (J + - J (3.69)dt rd d
dq- + Jdc p

where

j (VF - V - Vd) (3.70)

Integrating Eq. 3.68 and 3.69 across a time step using the trapezoidal

rule gives an equation for Vc and Vd at the end of the time step:

At At Ft+At 1 At At t
2R- 2RC c -2R - 2RC c

At 1 + At . t+At At 1 At t
2RCd 1+ L d 2RCd  2RCd

I t+At t: C (VRF + VWF

+At (3.71)

1 (.t+At t )+ L(2jd -jt+At _jt)

dVF + VRF C d dc p p

In Eq. 3.71, Jt+At is known from Eq. 3.67.

p

-71
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If the external series resistance R is chosen to be zero, the

time evolution of the diode voltage is given by Eq. 3.69, with

= d
J=C-d(V -v . (3.72)dt RF d

With the use of trapezoidal rule, Eqs. 3.69 and 3.72 give

t+At t + 2t(d _t jt+At) +e t+At t /(+C

V V + A J - J ..J )+C(V v )I/c Cd
d d 2 dc p p RF RF d

(3.73)

when the series resistance is zero.

The form of the circuit in Fig. 3.2 is such as to suppress

unwanted harmonic components of the terminal voltage. Bias oscilla-

tions 73 and subharmonic instabilities 72 can usually be prevented by

choosing an appropriate ratio between C and Cd. The series resistance

serves to damp out transients more quickly than they would otherwise

decay. Usually, a particular steady-state RF voltage amplitude is

desired at the device terminals. The terminal amplitude will differ

somewhat from that of the RF voltage source, but can be brought to

the desired value by adjustment of the source amplitude.

3.4 Conclusions

Development of an IMPATT simulation program based on finite-

difference approximations to the energy and momentum conserving

transport equations requires careful choice of the numerical methods

used. The methods described in this chapter are efficient and accur-

ate solutions to the numerical problems associated with various parts

of the transport equations.

Explicit finite-difference schemes incorporating forward-

time differences are likely to be unstable in the limit of very
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short time steps. The Lax method has awell-defined stability

requirement which is acceptable from the point of view of efficiency,

but the method introduces an undesirably large amount of numerical

diffusion. This diffusion can be substantially eliminated, without

sacrificing stability, by the use of a scheme of the Lax-Wendroff

type.

Both the first- and second-order present-time forms of the

relaxation terms impose a severe stability restriction on the time

step. The first-order advanced-time form imposes no such restriction,

and its asymptotic behavior is the same as that of the exponential

decay process which has been used to model the effects of collisions.

The simulation program makes use of initial and boundary

conditions which are simple, stable, and consistent with reasonable

assumptions about the conditions which occur in an actual device.
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CHAPTER IV. SIMULATION OF

MILLIMETER-WAVE IMPATT OPERATION

This chapter presents results of several series of

investigations which have been performed using the simulation

program described in the preceeding chapter. The first section

presents dc and large-signal results for situations of electric

field with very small spatial variation. These results permit clear

identification of certain overshoot and relaxation phenomena which

are present, but less clearly identifiable, in simulations of more

realistic IMPATT structures. The results also demonstrate the

appropriateness of certain assumptions made in Chapter II. In

Section 4.2 results obtained using the energy and momentum con-

serving simulation are compared with results obtained using

conventional drift-diffusion simulation for the same situations.

Systematic differences are observed and discussed.

Sections 4.3 and 4.4 are concerned with numerical experi-

ments to establish the importance of particular physical mechanisms

to overall device behavior. Section 4.3 is concerned with carrier-

inflow boundary conditions and considers the effects of highly

doped contact regions and injection of "hot" carriers at boundaries.

Section 4.4 examines the effects of the cooling of each carrier

distribution due to impact ionization initiated by the other

carrier type.

Section 4.5 is concerned with the implications of the present

study for the potential performance of millimeter-wave Si IMPATTs.
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Performance limitations due tononstatic carrier transport phenomena

and to parasitics external to the active diode are discussed. A

criterion for estimating the upper frequency limit for useful

operation of the IMPATT mode in any material is explained; this

upper limit is estimated to be approximately 500 GHz for Si IMPATTs.

4.1 "Flat Field" Results

Simulation of pn junction devices with spatially uniform

electric field in avalanche breakdown is useful for gaining an under-

standing of the behavior of the solution of the energy and momentum

transport equations in the presence of time and space variations of

the electric field. With flat fields a dc solution shows the behavior

of the transport quantities near a spatial field step (present at

each spatial boundary) in the absence of temporal variations. A

large-signal solution shows the behavior, away from the s ial

boundaries, of the transport quantities under time-varying, spatially

uniform conditions. The responses to spatial and temporal variation

of the field can thus be observed separately.

Simulation results have been obtained for flat-field situations

in devices 1 and 0.3 Pm Ling, the doping profiles of which are shown

in Fig. 4.1. The doping densities are chosen to approximately com-

pensate the space charge of mobile carriers at a dc bias current

density of l04 A/cm 2 . Figures 4.2 and 4.3 show dc carrier concen-

tration, current density, average velocity, average energy, and

electric field profiles for the two devices. The conventions used

in the figures are used in all results presented in this chapter:

positive electric field and hole velocity are taken from right to

left, and positive electron velocity from left to right. Electrons

-T5- ; -
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Nd =7.7 x 10 15 e 1 39XIO4 (X-ex 1°-4) cm -3

No=6.25x1015 e- .39x104 X cm-3

0 10 - 4
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(a)

Nd=7.8xlO 15 e 4.6X104 (X-0.3xlO-4) c-3

N,=O.25xI015 e-4.64X10 4 X cm-3

0 0.3x1O4

X, cm

Ai (b)

FIG. 4.1 DOPING PROFILES FOR (a) 1Mm AND (b) 0.3 um

DIODES WITH SPATIALLY CONSTANT FIELD.
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enter each device from the left-hand boundary with concentration,

average velocity, and average energy as described in Chapter III;

holes enter from the right.

The e'.ctron and hole concentrations in the figures increase

monotonically as the carriers traverse each device. This is the

usual situation in a pn Junction under reverse breakdown. The

velocity profiles show that the velocities overshoot their conven-

tional "saturated" values as carriers enter each device, approaching

the conventional values only after the carriers have traveled some

distance past the inflow boundary. These velocity overshoots are

opposed rather than assisted by diffusion down the carrier concen-

tration gradients. Carrier energy is low at inflow boundaries and

substantially "catches up" to the field over the velocity overshoot

distance. Once they have reached equilibrium with the field, velocity

and energy do not change through the remainder of the device length,

even though there is a concentration gradient present. This is in

accordance with the assumption of "uniform" conditions which was

made in Chapter II.

Velocity overshoots similar to those shown in Figs. 4.2 and

4.3 will be present in all of the energy and momentum conserving

• results presented in this chapter. The overshoots occur when

carriers enter the depletion region of a reverse-biased diode. In

doing so, they pass through an abrupt step in field strength, since

the inflow boundary conditions approximate conditions in a low-field

region. Immediately downstream of the step in field, the carriers

have lower average energy than they would have in equilibrium with the

field. At lower energy the electron and hole relaxation times are

-79-
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longer, so the relaxation terms in the velocity transport equations

become smaller, and velocity overshoot results.

The figures suggest that the carrier velocities respond much

more quickly to changes in the field than do the carrier energies.

Each energy can be seen to require some distance over which to

build up in response to the inflow field step. In contrast, the

corresponding velocity overshoots almost immediately, and the distance

over which the overshoot extends corresponds to that over which the

energy is increasing. This indicates that velocity transients are

due primarily to the energy dependence of the velocity relaxation

times. The situation of low energy and velocity overshoot which

occurs at each inflow boundary in Figs.14.2 and 4.3 will be referred

to as spatial lag, i.e., the lagging of energy behind a spatial var-

iation in the electric field.

Figures 4.4 and 4.5 show profiles of electric field, average

energy, and average velocity in the 1-um flat-field device at various

points in a large-signal RF cycle. The RF terminal voltage is sinu-

soidal with a frequency of 300 GHz and an amplitude of 15 V, which is

just under half the dc bias voltage of 32 V. The figures show condi-

tions inside the device at 0-, 90-, 180- and 270-degree phase in

the RF cycle, the phase angles at which the RF terminal voltage or

its time derivative reaches an extremum. These figures show evidence

of spatial lag near the contacts, just as did Figs. 4.2 and 4.3, but

now the region of interest is the center of the device, where the

energies and velocities can be seen to be spatially constant.

The carrier energies in Fig. 4.4 rise and iall under the

influence of the electric field. Figure 4.5 shows that the velocities
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depart from their saturated values of 107 cm/s and 8.5 x 106 cm/s

for holes and electrons, respectively. The departures occur because

of time lag between the local carrier energy and electric field.

At the beginning of the cycle, field strength is increasing with

time, so as energies lag behind the field the velocities overshoot

for the reasons discussed in connection with Figs. 4.2 and 4.3. At

180 degrees, an inverse process takes place. The field strength at

this point is decreasing with time, so the carrier energies, which

lag behind, are larger than those which would occur in carrier-field

equilibrium. At larger energies the momentum relaxation times are

shorter, so the velocities undershoot their conventional saturated

values. At 90 and 270 degrees the velocities return to their

saturated values because the energies substantially "catch up" to the

slowly changing field strength.

Further evidence for time lag between field strength and

carrier energy is given by Fig. 4.6. This shows the carrier ener-

gies, carrier velocities, and field strength at the center of the

1-Um flat-field device as functions of phase over one RF cycle.

Time lag between the extrema of field and energy is apparent in the

figure, as are the velocity overshoots and undershoots which occur

in times of increasing or decreasing field strength. The time

between an extremum in field and the corresponding one in energy

is approximately 1 ps. The lag between carrier energy and

temporal variation of the electric field will be referred to as

temporal lag.
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4.2 Comparisons Between Conventional and Energy and Momentum

Conserving Results

The results described in the preceeding section indicate

that spatial and temporal lag between carrier energy and electric

field strength occur in results from simulation based on the

energy and momentum conserving transport model. This lag is not

accounted for in conventional simulation based on drift and diffu-

sion, so the nature and degree of its effect on IMPATT operation can

be determined by comparing results from conventional simulation'6 with

those from energy and momentum conserving simulation. Comparisons

have been made for three double-drift IMPATT structures with lengths

of 1, 0.5, and 0.3 pm. The three doping profiles are shown in

Fig. 4.7. They were chosen so that the devices will be strongly

punched through at breakdown, and so that the electron and hole

drift transit times will be approximately equal in each device. The

conventional drift velocities, ionization rates, and diffusion

coefficients used are given in Appendix A P-d Fig. 2.4.

Figures 4.8, 4.9, and 4.10 show large-signal admittance results

from the two types of simulation for the 1-, 0.5- and 0.3-)jm struc-

tures, respectively. Table 4.1 lists anumber of representative

operating characteristics. There is very little difference between

the sets of data for the 1-Um structure. A consistent difference

between corresponding admittance data points can be seen in the

case of the 0.5-pm structure; and in the case of the shortest

structure, this difference ismore pronounced. Apparently the extra

physical effects allowed for in the energy and momentum conserving

transport model have a significant effect on the operation of

-85- %



No 9XI16 c- 3 Nd=017 cm-3

o .47x104  ioxio~
xt cm

(a)

17 -3 17 -3N,=1.7xl0 Cm Nd2I.9 x10 CM

o O.24xI0-4  .50xl0_4

X, cm

(b)

No 2.2 X10 17 cm 3  N d=2 .9 XIO 1 cm -

o O.17x104  0.30x0

X, cm

(C)
FIG. 4i.T DOPING PROFILES FOR (a) 1-tim, (b) O.5-im

AND (c) 0.3-Mm DOUBLE-DRIFTD I14PATTS.

-86- 4



m -- 8

IOxlO3

/f=130 GHz

I20

io U f6 E

80
I -c0

~Ioo E

-2

%*8O

-4xlO3  -3 -2 -I 0

G, mhos/cm2

FIG. 4.8 ENERGY AND MOMENTUM CONSERVING (SOLID LINE)

AND CONVENTIONAL (DASHED LINE) G-B RESULTS FOR

THE 1-4m DOUBLE-DRIFT DEVICE. (VF = 10 V AND

dc =6 x 1 A/cm )

-87-I
---



-~-----------

3x 10
4

,Pf=200 GHz

/8
/E

18 2 .°0/ -J

E

1140

I U

,I E

120

0 0

-8xlO 3  -6 -4 -2 0

G, mhos/cm 2

FIG. 4.9 ENERGY AND MOMENTUM CONSERVING (SOLID LINE)

AND CONVENTIONAL (DASHED LINE) G-B RESULTS

FOR THE O.5-wn DOUBLE-DRIFT DEVICE.

(v 8 V AND Jdc 10' A/cm')

RP dc

k -88-



500GH lOx I0'

450

400/

38

/6

350 4

4200
0

1I00

/;

I I -

-103O - -4 0
G, ae AcM

FIG. 4.10 ENERGY AND MOMENTUM CONSERVING (SOLID LINE)

AND CONVNIONAL (DASHED LINE) G-B RESULTS FOR

THE 0.3-pm DOUBLE-DRIFT DEVICE. (VRF =6 V AND

F- idc 1 .5 x 10' A/cm')
-200

L'-2
L .p . _ J =_ -12 ... 1"- -4 0 . . . . .:---'" . . .

-- * -- i • -, m m mmmmGi mhi sm



Table 4.1

Sample Results from Large-Signal Simulation

Device dc Frequency VRF G n
(Um) (A/cm2 ) (GHz) (V) (mhos/cm2 ) (percent) dc

16 x l0 100 10 -2.9 x 103  8.2 30
(- 2.7 x i03)* (7.8)* (29.9)*

0.5 1 x 10 140 8 -6.5 x 103  i0.4 20.3
'- 5.3 x l0s) (8.4) (19.9)

0.3 1.5 x 105 200 6 1.1 x i04 8.6 15.6
(8.1 x 101) (6.3) (15.0)

"Results from conventional simulations are shown in parenthesis.

1*9I0

[i

* . A



double-drift Si IMPATTs for device lengths of approximately

0.5 um or less.

The results in Table 4.1 show that the energy and momentum

conserving simulation generally predicts larger dc voltage at a

given operating point than does the conventional simulation. This

is probably an effect of spatial lag. In the energy and momentum

conserving simulation, the low energies at inflow boundaries result

in lower rates of impact ionization than would be predicted by the

conventional transport model. Lower rates near the boundaries must

be compensated for by larger rates in the center of a device, re-

quiring an increase in field strength and dc terminal voltage. The

occurrence of spatial lag in a double-drift device is shown by

Fig. 4.11, which gives energy, velocity, and field profiles in

the 0.3-pm double-drift device under dc conditions. Carriers enter-

ing the device can be seen to undergo velocity overshoot.

The way in which the admittance results in Figs. 4.9 and

4.10 differ is initially surprising if one intuitively expects that

the inclusion of higher order transport effects in an IMPATT model

will result in poorer device performance. Where the results differ

significantly, thp energy and momentum conserving simulation con-

sistently predicts larger negative conductance, though somewhat lower

optimum frequency, than does the conventional simulation. There are

several mechanisms which may tend to increase negative conductance.

One of these is delay in the impact ionization process due to energy

lag. This would cause carrier injection to occur later in the RF

cycle. Another mechanism is velocity overshoot and undershoot on

the part of drifting carriers. This might contribute to negative

-91- t
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conductance by giving the induced current waveform a more favorable

shape, provided overshoot and undershoot were to occur at the proper

points in the cycle. Changes in velocity might also affect the amount

of time that carriers spend in the ionization region, thereby affect-

ing the shape of the injected pulse.

Figures 4.12 through 4.16 provide insight into the mechanisms

which cause increased negative conductance in the energy and momentum

conserving results. The figures present simulation results from the

0.3-um device operating at a frequency of 300 GHz with an RF amplitude

of 10 V. Figure 4.12 is a set of plots of injected and induced

current waveforms resulting from the two types of simulation. The

sinusoidal terminal voltage is shown for phase reference. The

injected current depicted in the figure is the integral over the

device length of the instantaneous electron and hole generation rates,

taken at each time step. The induced current is the component of

terminal current which flows because of carrier motion in the interior

of the device.

Figure 4.12 shows that the injected current waveforms are very

similar in shape, but the injected current in the energy and

momentum conserving result is delayed by approximately 10 degrees

(or 0.1 ps) in comparison to the conventional result. A similar

delay also appears in the plot of the terminal currents, along with

some difference in shape. Injection delay tends to increase

negative conductance and, by shortening the optimum transit angle,

tends to lower the optimum IMPATT operating frequency. Fig-

ures 4.13 and 4.16 show profiles of carrier concentration, electric

*field, average velocity and average energy at four points in the RF
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cycle which is shown in Fig. 4.12. The figures show the occurrence

of spatial lag similar to the lag seen in Fig. 4.11.

Figures 4.17 and 4.18 show the time variation over one RF

cycle of electric field, average energy, and average velocity at

fixed points inside the device. The locations of the points are

shown by their distances, given in the figures, from the left-

hand contact. One point is located near each of the two contacts,

and a third near the metallurgical junction. The energy profiles

show temporal lag of approximately 20 degrees between the peak

in field and the peak in majority carrier energy at the points near

the device boundaries. Near the junction, the lag is somewhat less.

The velocity profiles from near the boundaries show undershoot in

majority carrier velocity between approximately 200- and 270-degree

phase, and overshoot betweeen approximately 300- and 30-degree phase.

Similar effects occur near the center of the device, but to a lesser

degree.

The phases of the velocity overshoots and undershoots in

Fig. 4.18 correspond to the phases at which the induced current

waveforms in Fig. 4.12 differ in shape. It appears that the shape

difference in the induced currents is due to undershoots and over-

shoots in velocity, while the lag between the injected and the

induced current waveforms is due to injection delay caused by

energy lag. The shape difference is roughly symmetrical about

a 270-degree phase, so it probably does not affect negative conduc-

tance strongly. Evidently the increased negative conductance seen

in energy and momentum conserving results is primarily due to in-

Jection delay caused by energy lag.
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4.3 Effects of Boundary Conditions

Energy and momentum conserving simulation involves the setting

of more boundary conditions than does conventional simulation, so it

is difficult to be certain when conditions used inthe two types of

simulation can be considered equivalent. The boundary conditions

used in obtaining the energy and momentum conserving simulation

results presented thus far were those described in Chapter III. Since

the inflow boundary conditions may influence spatial and temporal

lag, thereby affecting device admittance results, it is important

that their influence be assessed.

One way of setting realistic boundary conditions of the active

region of a device is to add a highly doped contact region to each

end. This allows the energy and velocity of inflowing carriers to

adjust to the field strength in the contacts before the carriers enter

the active region. This procedure is expensive in terms of computer

time. In order that the contact regions be described realistically,

the space step must be made smaller than the Debye length in the

contacts. Numerical stability requires that At be reduced in pro-

portion to Ax, so that the cost of simulation goes roughly as the

square of the number of space steps.

Some simulation of the 0.3-pm device with contacts added

has been performed. The doping profile with contacts is shown in

Fig. 4.19. The Debye length was calculated using
74

Ld = T '-12, 
(4.1)

where N is the doping density in the contacts. At a temperature of
c
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5001K, the Debye length in the contact regions shown in Fig. 4.19

is approximately 37 a. The space steps and time steps for simulation

of the device with contacts were chosen to be 26 1 and 0.004 ps,

respectively. This time-step length is short enough to require use

of a Lax-Wendroff type finite-difference scheme, for the reasons

discussed in Chapter III. Overall, adding the contacts shown to the

0.3-m device increases the cost of simulation by more than a factor

of ten.

Figures 4.20 through 4.23 show profiles of electric field,

carrier concentration, average energy, and average velocity at four

points in the RF cycle when the 0.3-m device is operated at 300 GHz

with an RF amplitude of 6 V. Figures 4.24 through 4.27 show similar

results with no contacts present. It is evident that the behavior of

the solution of the transport equations across the active region is

nearly identical in the two cases. It may be concluded that it makes

little difference whether specific allowance for contact regions is

made or whether the simple boundary conditions described in Chapter

III are applied.

4.4 Sources of Eergy Lag

The two kinds of simulation results shown in Figs. 4.8 through

4.10 diverge more rapidly with decreasing device length than with

increasing frequency. This can be seen from the fact that l00-GHz

results, which have been obtained for each of the three devices,

diverge with decreasing length, while, for a given device, the

difference between the two types of results changes little with

frequency. The way in which the results behave implies that the
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energy lag which gives rise to increased negative conductance becomes

more pronoi-,cedasdevice length decreases, but changes comparatively

little with frequency. Factors which might contribute to the length

dependence of energy lag include the inflow boundary conditions on

energy, carrier cooling due to impact ionization by opposing carriers,

and spatial variation of the electric field. Each of these will now

be examined.

Effects of the inflow boundary conditions on spatial lag have

been tested by incorporating "hot" boundaries, in which the inflowing

carriers are assigned three times the thermal energy associated with

the lattice temperature, in the simulation program. This might be

expected to reduce the amount by which carriers are out of equili-

brium with the field after crossing the field step at the inflow

boundary. Figures 4.28 and 4.29 show resulting profiles of electric

field, average energy, and average velocity which correspond to

those shown in Figs. h.2h through 4.27. The similarity between the

corresponding profiles shows that the degree of energy lag has

little to do with the inflow conditions on energy.

Energy lag might also be affected by the cooling of each

carrier distribution by impact ionizations caused by the opposing

carrier type. This possibility will be explained in terms of

electrons. The number of electrons entering a device at the left-

hand boundary is small. Just upstream of the boundary, impact

ionizations initiated by holes may produce a number of electrons

comparable to or greater than the number which actually cross the

boundary. Consequently, the average energy of electrons near the

boundary may be determined for the most part by the low average
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Jdc 1.5 x 10' A/cm' AND f = 300 GHz)
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energy of those electrons which are produced by hole ionizations.

This would depress the average energy of the electron distribution

and contribute to spatial lag. The hole distribution near the right-

hand boundary might be affected in a similar way.

In order to eliminate this "opposite-carrier cooling" effect,

it can be assumed that carriers created by opposite-carrier ioniza-

tions have exactly the same average energy as those already present.

Then Eq. 2.32 would become

[awl - (w - w )' P = 0n (4.2)

.2

Figures 4.30 and 4.31 show electric field, average energy, and average

velocity profiles calculated under th. same conditions as were those

shown in Fig. 4.24 through 4.27, except that opposite-carrier cooling

has been eliminated from the simulation program. The change clearly

results in less spatial lag.

These results suggest a reason why, as seen previously, simula-

tion results are relatively insensitive to changes in the inflow

boundary conditions. The total population of each carrier near its

inflow boundary conditions is dominated by carriers produced by

opposite-carrier ionizations. Average energy and velocity near

inflow boundaries are determined mainly by the energy and velocity

of carriers produced by impact ionizations, and not by the proper-

ties of carriers which cross the inflow boundary. Thus opposite-

carrier cooling has the effect of decoupling the interior of the

device from its inflow boundaries.

Figures 4.32 and 4.33 show admittance results from the 1-

and O.3-om devices with and without opposite-carrier cooling.
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The removal of cooling from the simulation can be seen to result

in increased negative conductance in both devices, withthe increase

being much more pronounced in the case of the shorter device.

These results are in apparent contradiction to the idea that energy

lag is what causes increased negative conductance in energy and

momentum conserving simulation results. Opposite-carrier cooling

increases the amount cf spatial lag associated with the inflow bound-

aries, but it reduces negative conductance. This can be seen from

comparison of Figs. 4.8 and 4.1o with Figs. 4.32 and 4.33. Spatial

lag associated with opposite-carrier cooling clearly does not cause

the observed divergence between simulation results. Instead, it

tends to counteract the effects of whatever does give rise to the

divergence.

The mechanism which does cause the two types of results to

diverge is probably associated with the spatial gradient of electric

field strength inside the double-drift devices. In contrast to the

flat-field structures considered in Section 4.1, the double-drift

structures described in Section 4.2 are doped heavily enough to

give considerable slope to the field strength. The slope in field

gives rise to a kind of distributed energy lag whose degree increases

with the steepness of the slope, hence with increasing doping con-

centration. This will now be described in more detail.

The total time rate of change in field strength seen by a

moving carrier consists not only of the time rate of change of

field at the current position of the carrier, but also of the change

seen by the carrier as it moves through spatial variations inthe

field. The total rate of change is given by

A -121-



dE =E + u LE
dt at ax

During much of the buildup of the injected pulse, the carrier current

densities are small, and the time partial of the electric field is

approximately equal to the time partial of the terminal voltage divided

by the device length. When the voltage is sinusoidal, the maximum of

the time partial of the field at angular frequency w is given by

E_ RF
- - = (4.4)at L

and occurs at 0-degree phase. When the carrier density is small, the

space partial of the field is related to the doping density by

Poisson's equation:

!E = qN . (4.5)
ax C

For electrons in the p layer of the 1-m double-drift device

at a frequency of 100 GHz and an RF amplitude of 10 V, Eq. 4.3 becomes

dE = 6.3 x 1016 V/cm-s + 1.2 x 1017 V/cm.s (4.6)
dt

where it is assumed that u is 8.5 x 106 cm/s. Similarly, in the

0.3-im device at an amplitude of 6 V, the equation becomes

dE = 1.3 x 1017 V/cm.s + 2.9 x 1017 V/cm.s . (4.7)
dt

Equations 4.6 and 4.7 show that the total time rate of change

of field seen by a moving carrier at a given frequency is much larger

in the 0.3-m device than in the 1-im device. The equations also

show that, even at the moment when the time partial of the field is

-122-
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at its maximum, the spatial gradient of field contributes the

majority of the total rate of change seen by a moving carrier.

The greater the total rate of change, the greater the lag between

carrier energy and field, so that at the center of the 0.3-pm

device the ionization rates peak later in the RF cycle than in the

1-pm device, giving rise to more injection delay and a larger i,,crease

in negative conductance relative to the conventional result.

4.5 Limitations on IMPATT Performance

* The simulation results presented in this chapter indicate that

Si diodes will support operation of the IMPATT mode at frequencies up

to at least 300 GHz. It will be shown in this section that the

material properties do eventually impose a fundamental upper frequency

limit on IMPATT operation. The frequency at which this limit lies

can be estimated for any material by use of the energy balance rela-

tion and is in the submillimeter-wave region for Si devices. This

section also discusses why the simulation predicts millimeter-wave

device efficiencies which are in excess of those which are obtained

in experiment. It is shown that this can be fully explained by the

a presence of parasitic series resistance external to the active

IMPATT layer.

The existence of an upper frequency limit for IMPATT operation

is a result of the way in which carrier energy responds to the time

variation of the electric field. The simple energy balance rela-

tion, which accounts for energy gain from the field and loss to

lattice collisions, provides an approximate description of the

energy response:
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dw o
T_- = quE o (4.8)

w

If u is constant and the time-varying component of the field is given

by the real part of E e i t, the solution for the time-varying componento

of energy is

= Re t+hiw qEoUe i (4.9)

The energy response given by Eq. 4.9 follows the familiar

single-pole transfer function. A Bode plot 7 5 for the normalized

response is shown in Fig. 4.34. The plot shows that the ampl'tude of

the response is down by a factor of two at a frequency of I/21Trw

In view of the rapid variation of the ionization rates with energy

which is shown in Fig. 2.3, it appears that IMPATT mode operation will

be seriously degraded at this frequency because of reduced particle

current modulation. The response begins to roll off an octave lower,

implying that material properties (specifically the energy relaxa-

tion time) will impose an upper frequency limit of approximately

1/4'wr for substantially undegraded IMPATT operation.w

Figure 4.34 also shows the increasing phase lag between

energy and field as frequency increases. Lippens and Constant4
0

have used the energy b~lance relation to support previously pub-

lished findings from this work which pointed to energy lag as the

reason for predictions of increased negative conductance in energy

and momentum conserving simulation results. Lippens and Constant

suggested that the findings could be explained in terms of the phase

lag shown in the figure. While their conclusion that the phase lag

in itself tends to make IMPATT operation more efficient is valid,
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they overlooked the roll off in the energy response which is

predicted by the energy balance relation. It should be noted

that the simple balance relation fails to allow for spatial inhomo-

geneities. In fact, as previously noted, spatial field gradients

are apparently the principal reason for differences between

conventional and energy and momentum conserving simulation results

for submicron IMPATT devices.

While analysis involving the energy balance relation is

approximate, a more detailed analysis would not invalidate the

conclusion that the energy response will roll off at high frequencies.

Equation 4.9 predicts that the frequency at which roll off begins

is approximately 1/41Tw . The energy relaxation time for electrons

in Si was estimated in Chapter Ii to be approximately 0.15 ps

over a broad range of energy, implying that IMPATT mode operation

in Si will deteriorate substantially at frequencies above 500 GHz.

This roll off in the energy response may be the reason why the two

admittance curves in Fig. 4.10 cross just below 500 GHz.

The best reported experimental efficiencies for millimeter-

wave Si IMPATTs are 1 percent or less at frequencies above 150

GHz.'7 This is much lower than the efficiencies routinely obtained

from microwave devices. The results of this study suggest that this

is not due to an intrinsic failure of the IMPATT mode in Si at

millimeter-wave frequencies. An alternative explanation is that

parasitic losses are responsible for low millimeter-wave efficien-

cies and constitute the major limitation on the experimental per-

formance of millimeter-wave IMPATT diodes. Sources of parasitic

loss include undepleted substrate layers in diode structures,

-126-
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ohmic contact resistance, series resistance of bond wires, and other

circuit losses. Loss mechanisms which are unimportant at lower

frequencies may become important in the millimeter-wave range be-

cause of skin effects, surface scattering effects, and reductions

in carrier mobility due to velocity relaxation.

A detailed analysis of parasitic loss is outside the scope

of this study, but the effect of loss can be estimated by placing

an equivalent parasitic resistance in series with the "intrinsic"

diode. Figure 4.34 shows both "intrinsic" negative resistance and

efficiency in the presence of various values of series resistance

as functions of HF amplitude for the 0.3 pm device operating at

300 GHz. A device diameter of 0.5 mil is assumed. "Intrinsic"

efficiency as predicted by conventional simulation is also shown.

The peak efficiency predicted by energy and momentum conserving

simulation is much greater than that predicted by conventional

simulation, and both efficiencies are large enough to indicate

little deterioration in the operation of the IMPATT mode in Si

at frequencies up to 300 Hz. The presence of parasitic resistance

can be seen to reduce efficiency drastically.

4.6 Summary and Conclusions

Simulation results show that the additional physical effects

allowed for in the energy and momentum conserving transport model

cause the average energy of carriers to lag behind the local electric

field. Energy lag can occur in space, downstream of abrupt changes

in field, or it can occur in time, in the presence of rapid time

variation of field. Energy lag gives rise to overshoots and under-

shoots in carrier velocity as compared to conventional field-dependent
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drift velocity. Local departures from the conventional velocity

can be large, but tend to affect minority carriers rather than

majority carriers in IMPATTs, so their effect on device terminal

admittance is generally small.

As the double-drift device length becomes less than 0.5 Pm,

energy and momentum conserving simulation predicts substantially

better IMPATT performance than does conventional simulation. A

70-percent difference in predicted optimum efficiency at 300 GHz

has been observed. Differences in predicted performance appear to

be due to injection delay caused by the lag between the carrier

energy and the electric field. This lag appears to be caused by

spatial field gradients.

Simulation results are relatively insensitive to boundary

conditions on carrier energy, and the boundary conditions described

in Chapter II have been found to give results consistent with those

obtained incorporating realistic contact regions. The degree of

carrier cooling which results from impact ionization by opposing

carriers is of more importance to device behavior than boundary

conditions. This cooling increases the amount of spatial energy

lag and reduces negative conductance.

Simulation results predict greater millimeter-wave device

efficiencies than are observed in experiment. This can be accounted

for by the presence of modest amounts of parasitic series resistance.

It is apparently such resistance, rather than a deterioration of

IMPATT mode operation at high millimeter-wave frequencies, that

limits the performance of experimental devices. In the absence

of parasitic loss, the upper frequency of operation of the IMPATT
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mode would be subject to a fundamental limit which is set by

material properties. This limit is estimated to be approximately

500 GHz for Si devices.
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CHAPTER V. SUMMARY, CONCLUSIONS,

AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Summary and Conclusions

The purpose of this study was to develop and apply a new

class of semiconductor device simulation which is more general than

existing drift-diffusion based simulations, and to use the simula-

tion to investigate the "intrinsic" properties of millimeter-

wave Si IMPATTs. A self-consistent bipolar energy and momentum

conserving simulation has been developed for this purpose. The

work that was performed falls into three categories: model defini-

tion, model implementation, and model utilization. The overall

effort is believed to be the first reported application of a self-

consistent bipolar energy and momentum conserving transport model

to semiconductor device simulation.

Work performed in the category of model definition was

described in Chapter II of this dissertation. The charge-transport

model developed consists of transport equations for electron and

hole concentration, average velocity, and average energy as

functions of time and space. It provides a second-order descrip-

tion of the carrier-velocity distributions, and allows the dis-

tributions to evolve in space and time in a self-consistent manner.

This is in contrast to the conventional model based on drift and

diffusion, which implicitly assumes that the distributions are always

in equilibrium with the local electric field.

i °3.
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The transport equations themselves are the zeroth, first, and

second velocity moments of the phase-space transport equation. Except

for the terms describing the effects of collisions, the equations were

obtained by application of the method of moments. The collision terms

were not obtained in this way because the form of the phase-space

collision term for carriers in Si is not sufficiently well known

to permit the taking of velocity moments. Instead, forms for the

collision terms were chosen in such a way as to allow for their

dependence on the concentration, average energy, and average

velocity. The collision parameters used in the model are energy-

dependent relaxation times for energy and velocity, and energy-

dependent, per-unit-time impact ionization rates. The latter are

more fundamental than the conventional per-unit-distance ionization

rates because they do not assume any correlation between the average

carrier energy, which determines the number of ionizations taking

place per unit time, and the average velocity, which determines the

distance traveled in the average time between ionizations.

The parameters were given numerical values by simplifying

the transport equations to describe the situation of a spatially

uniform, dc electric field, and requiring that results from the

simplified equations be consistent with experimentally known values

of electron and hole drift velocities and ionization rates. Mapping

the parameters onto the carrier energies was accomplished through

use of a theoretically determined equilibrium relationship between

the carrier energies and the electric field. The hole and electron

energy relaxation times determined in this way were approximately

0.075 and 0.15 ps, respectively, over much of the carrier energy

-132-;; j4
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range considered. The velocity relaxation times were found to

range from twice the energy relaxation times at low energies to

less than 0.02 ps at high energies.

A correspondence between the energy and momentum conserving

transport model and the conventional drift-diffusion model was

established. This showed that, under the conditions of slow space

and time variation of the electric field, the conventional diffu-

sion coefficient can be written in terms of the velocity relaxation

time and the temperature of the carrier distribution. The result-

ing estimates for the electron and hole diffusion coefficients as

functions of the electric field drop off considerably from their

low-field values as field strength increases. The energy and

momentum conserving model was also compared to other nonconventional

models which have been applied to modeling of IMPATTs. The latter

were shown to be less complete and less self-consittent than the

energy and momentum conserving model.

Computer implementation of the transport model using finite-

difference techniques was described in Chapter 1II. A set of

normalizations was developed which (for constant time and space

step) eliminates the time step, the space step, and several phy-

sical constants from the finite-difference equations. Stability

analysis of various finite-difference schemes showed that many

explicit forms of the energy and momentum conserving transport

equations are unstable when the time step is short in comparison

to the relaxation times, and other stable forms may exhibit

undesirably large amounts of numerical diffusion. A scheme of

the Lax-Wendroff type was found to be capable of giving stability

-133-
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and minimal numerical diffusion for all time-step lengths. It

was further shown that, when the time step is sufficiently long,

certain more efficient schemes which are otherwise unstable can be

made stable by the use of an advanced-time form of the energy

and velocity relaxation terms.

Chapter IV presented results of computer simulation of

millimeter-wave Si avalanche diode structures. Simulation of low-

doped diodes with spatially uniform electric field shows that

rapid field changes in space (such as at the boundaries of deple-

tion regions) and time( as in the presence of large-signal RF

terminal voltages) can give rise to nonequilibrium between the

carrier velocity distribution and the electric field. Such non-

equilibrium manifests itself in the form of lag between the carrier

energy and local electric field, and gives rise to velocity over-

shoot or undershoot. The length of the distance over which the

minority carrier distribution adjusts itself to a field step in

space was shown to be strongly affected by the initial temperature

assigned to carriers generated by impact ionization by carriers of

the "opposing" type.

Energy and momentum conserving simulation results were found

to diverge significantly from conventional results as device length

becomes less than 1 Um. Energy and momentum conserving results

predict greater negative conductance than conventional results,

apparently because of increased injection delay caused by lag

between the carrier energies and the electric field. The amount

by which the two types of results diverge depends more strongly

on device length than upon operating frequency. This is apparefttly

-134-
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due to the increased field gradients which occur as device length

decreases. Differences between predicted performances at optimum

RF amplitude are particularly large.

Simulation results showed no degradation in operation of the IMPATT

mode in Si at frequencies up to 300 GHz. Calculations based on the

energy balance relation predicted that the IMPATT mode in Si will

begin to degrade as frequency exceeds 500 GHz because the carrier

energies will cease to respond to time variation of the electric

field. The millimeter-wave efficiencies predicted by simulation

results are well in excess of those which have been obtained in

experiment. This strongly suggests that parasitic loss, rather than

failure of the intrinsic IMPATT mode, is the factor which presently

limits the performance of the current state-of-the-art devices.

5.2 Suggestions for Further Research

The present investigation has laid a foundation for a variety

of further work. Suggestions for further research can be considered

in three categories: transport modeling, numerical methods, and

device simulation.

The most obvious extension in the category of transport model-

ing is to incorporate nonequivalent conduction band valleys. This

would extend the applicability of the simulation to III-V compounds

such as GaAs and InP, which are widely used to fabricate high-

performance semiconductor devices. It is known that certain relaxa-

tion times in GaAs and InP are much longer than those encountered

in Si, 7 7 and so "transient" effects will probably be of importance

at lower frequencies and in larger devices than is the case Mr Si.
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The forms of the equations for the multi-valley case have been

presented by Blotekjaer.'7 However, compared to the single-

valley situation, additional relaxation times are needed to char-

acterize intervalley transfer. These cannot be determined by the

method used in Chapter II (i.e., requiring consistency with

experimental measurements), and, as discussed below, will have to

be obtained in some other way. Work on extending the energy and

momentum conserving model to transport in GaAs is currently underway

within the Electron Physics Laboratory.

Under low-field conditions calculation of the required

additional relaxation times is reasonably straightforward, using

statistical Monte Carlo simulation or the Bees iterative technique.'
4

Existing theoretical calculations seem to be inconsistent with

experimental observations for intermediate and high fields--

typically above 20 kV/cm. (One example is the calculation by

Jacoboni et al.78 of mean carrier energies of the order of 0.5 eV

at a field of 100 kV/cm. This implies significant impact ionization

at this field, something which is not observed in practice.) The

discrepancy between theory and experiment may be due to neglect of

the intra-collisional field effect. 79 A major priority for future

transport modeling should be transport characterization including

kimpact ionization and the intra-collisional field effect. The

deterministic Rees iterative technique is probably best suited for

transport characterization and parameter evaluation, since it

avoids the large statistical variance associated with Monte Carlo

characterization of "rare" events such as impact ionization, and
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is also well suited to describing nonlinear effects such as

transport in degenerate semiconductors and Auger recombination.

Additional work in the area of numerical methods should

include the extension to two spatial dimensions. This will probably

not present fundamental problems; the stability criteria for finite-

difference approximations to the two-dimensional transport equations

should be similar to those established in this work for the one-

dimensional case, and techniques for the rapid solution of the two-

dimensional Poisson's equation are now well established. B The

extension to two dimensions would permit energy and momentum con-

serving simulation of transistor structures. Another extension of

the simulation would be incorporation of a nonzero heat flow

vector. It does not appear that this would be difficult, although

stability of proposed finite-difference equations incorporating a

description of heat f'ow should be examined using the techniques

applied in Chapter III. Finally, renewed attention could be given

to the prospects of obtaining an implicit or semi-implicit numerical

scheme whose stability would permit use of longer time steps. The

advantage of sucha scheme is not certain, however, since time-step

size is limited by accuracy requirements even for unconditionally

stable schemes.

The application of energy and momentum conserving simulation

to semiconductor device modeling is in its infancy. Advances in

technology have only recently made possible the fabrication of

devices so small that traditional drift-diffusion simulation pro-

vides a generally inappropriate description. The overshoot

effects in small devices can be described using parameterized4
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distributions as in the present work, or using "exact"

distributions. The former approach is much less expensive.

Only when a case can be made that the "fine structure" of the

distribution is significant (as in the Jones-Rees effect' in Gunn

diodes) does it seem worthwhile attempting to use "exact" distri-

bution models. The previously mentioned extensions to the present

work would yield an energy and momentum conserving simulation

applicable to a wide range of semiconductor devices, and could provide

answers to many questions of current interest in the field of sub-

micron electronics. Possible one-dimensional simulation investi-

gations include simulation of other transit-time devices (including

TUNNETs and transferred electron devices) and investigation of

the large-signal RF properties of nn+ junctions. A two-dimensional

simulation could be used to model short-channel effects in MESFETs

and MOSFETs, and to examine the feasibility of proposed "novel"

transistors such as the ballistic transistor'2 and planar doped

barrier transistor." Overall, energy and momentum conserving

simulation seems likely to become the standard approach of sub-

micron semiconductor device modelers.

The most significant means of comparison between conventional

and energy and momentum conserving IMPATT simulation results may

be to compare on the basis of maximum obtainable efficiency. A

logical extension of the work presented in this study would be to

use the two types of simulation to search for optimum IMPATT

structures and large-signal operating points as functions of

frequency over the millimeter-wave range.

i
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APPENDIX A. MATERIAL PARAMETERS

The material parameters used throughout this study pertain

to Si at a lattice temperature of 5000 K. The diffusion coefficients

used in all drift-diffusion simulation are those given in Fig. 2.4.

Static ionization rates" are given in Table A.1. Table A.2 gives

static drift velocities, and Table A.3 lists a number of other

parameters.

Table A.1

Static Ionization Rates8

a(E) = A exp (- b/E) cm-F

Quantity Holes' Electrons E (kV/cm)

A (cm-') 2.0 x 106 2.6 x 106 0 < E < 240
2.0 x 106 6.2 x l0s  240 < E < 530
5.6 x l0 s  5.0 x 105  E> 530

b (kV/cm) 2.17 x 103 1.69 x 10' 0 < E < 240
2.17 x 10' 1.31 x 103  240 < E < 530
1.54 x 103  1.25 x 10 3  E>530

Table A.2

Static Drift Velocity
3

Vd(E) = vsat[l - exp (- jIEI/vsat) ] cm/s

Quantity Holes Electrons

vsat (cm/s) 1.02 x i07  8.5 x 106

U (cm2/V's) 250 550

1i
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Table A. 3

Other Parameters

Quantity Symbol Value

Dielectric constant C 1.04 x 10- 12 F/cm

Ionization threshold E 2.0 eVC
energy

Optical phonon I 0.056 eV
energy

Effective mass m 4.55 x 10-31 kg (holes)
8.84 x 10-31 kg (electrons)

Mean free path 60 (holes)
80 (electrons)

K
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